2,948 research outputs found
Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications
The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator
On the effective plate thickness of monolayer graphene from flexural wave propagation
We utilize classical molecular dynamics to study flexural, or transverse wave propagation in monolayer graphene sheets and compare the resulting dispersion relationships to those expected from continuum thin plate theory. In doing so, we determine that regardless of the chirality for monolayer graphene, transverse waves exhibit a dispersion relationship that corresponds to the lowest order antisymmetric (A0) mode of wave propagation in a thin plate with plate thickness of h = 0.104 nm. Finally, we find that the achievable wave speeds in monolayer graphene are found to exceed those reported previously for single walled carbon nanotubes, while the frequency of wave propagation in the graphene monolayer is found to reach the terahertz range, similar to that of carbon nanotubes.open9
Mono-X versus direct searches: simplified models for dark matter at the LHC
We consider simplified models for dark matter (DM) at the LHC, focused on mono-Higgs, -Z or -b produced in the final state. Our primary purpose is to study the LHC reach of a relatively complete set of simplified models for these final states, while comparing the reach of the mono-X DM search against direct searches for the mediating particle. We find that direct searches for the mediating particle, whether in di-jets, jets+[InlineMediaObject not available: see fulltext.], multi-b+[InlineMediaObject not available: see fulltext.], or di-boson+[InlineMediaObject not available: see fulltext.], are usually stronger. We draw attention to the cases that the mono-X search is strongest, which include regions of parameter space in inelastic DM, two Higgs doublet, and squark mediated production models with a compressed spectrum
Comparison of acidic and enzymatic pectin extraction from passion fruit peels and its gel properties
The influences of extractor concentration, extraction temperature and time on the yield of pectin and degree of esterification (DE) were investigated by the acidic and enzymatic extraction methods. Citric acid and Celluclast were selected as pectin extractors for environmentally friendly reasons. The peels of yellow passion fruit using the acidic and enzymatic extraction methods gave pectin yield of 7.16 and 7.12%, and DE of 71.02 and 85.45% in the optimized condition of extraction time of 102 min with citric acid concentration of 0.19% (w/w) at 75C and Celluclast concentration of 1.67% (w/w) at 61.11C, respectively. The enzymatic extraction method has greater capability of producing high methoxyl pectin. The morphological features of fruit peel powder and the extracted pectin examined by scanning electron microscopy suggested that the nanostructure of wet passion fruit pectin was dependable on the type of extraction process. The formed pectin gel also has pseudoplastic liquid behavior and its viscosity was greatly affected by sugar. Pectin has been intensively used as natural gelling agent and stabilizer to alter rheological properties in food ingredients by most food processing industries to achieve desired textural quality. Pectin could be recovery from fruit wastes. The conversion of passion fruit peel into pectin offers great scope for utilization. Citric acid and enzymatic extraction methods are effectively used for pectin extraction which may be of interest by pectin industry and consumer with these eco-friendly processing technology with no using harmful chemicals. Furthermore, scientific work of this study such as the optimized condition, morphological features of extracted pectin and pectin gel formation contributes valuable information on pectin, which could be beneficial for pectin industry improving the process quality of pectin as well as process profitability
Charting multidisciplinary research and action priorities towards the conservation and sustainable management of sea turtles in the Pacific ocean : a focus on Malaysia
Conservation, Turtle culture, Malaysia,
Information and Particle Physics
Information measures for relativistic quantum spinors are constructed to
satisfy various postulated properties such as normalisation invariance and
positivity. Those measures are then used to motivate generalised Lagrangians
meant to probe shorter distance physics within the maximum uncertainty
framework. The modified evolution equations that follow are necessarily
nonlinear and simultaneously violate Lorentz invariance, supporting previous
heuristic arguments linking quantum nonlinearity with Lorentz violation. The
nonlinear equations also break discrete symmetries. We discuss the implications
of our results for physics in the neutrino sector and cosmology
Genome analysis of a new Rhodothermaceae strain isolated from a hot spring
A bacterial strain, designated RA, was isolated from water sample of a hot spring on Langkawi Island of Malaysia using marine agar. Strain RA is an aerophilic and thermophilic microorganism that grows optimally at 50-60°C and is capable of growing in marine broth containing 1-10% (w/v) NaCl. 16S rRNA gene sequence analysis demonstrated that this strain is most closely related (<90% sequence identity) to Rhodothermaceae, which currently comprises of six genera: Rhodothermus (two species), Salinibacter (three species), Salisaeta (one species), Rubricoccus (one species), Rubrivirga (one species), and Longimonas (one species). Notably, analysis of average nucleotide identity (ANI) values indicated that strain RA may represent the first member of a novel genus of Rhodothermaceae. The draft genome of strain RA is 4,616,094 bp with 3630 protein-coding gene sequences. Its GC content is 68.3%, which is higher than that of most other genomes of Rhodothermaceae. Strain RA has genes for sulfate permease and arylsulfatase to withstand the high sulfur and sulfate contents of the hot spring. Putative genes encoding proteins involved in adaptation to osmotic stress were identified which encode proteins namely Na+/H+ antiporters, a sodium/solute symporter, a sodium/glutamate symporter, trehalose synthase, malto-oligosyltrehalose synthase, choline-sulfatase, potassium uptake proteins (TrkA and TrkH), osmotically inducible protein C, and the K+ channel histidine kinase KdpD. Furthermore, genome description of strain RA and comparative genome studies in relation to other related genera provide an overview of the uniqueness of this bacterium
A Parametric Cycle Analysis of a Separate-Flow Turbofan with Interstage Turbine Burner
Today's modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. This study focuses on a parametric cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The JTB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, linear relation between high- and low-pressure turbines, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB
Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner
Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design-point engine will be exported to an engine reference data file that is required in off-design calculation
- …