2,103 research outputs found
Terahertz cascades from nanoparticles
In this article we propose a system capable of THz radiation with quantum
yield above unity. The system consists of nanoparticles where the material
composition varies along the radial direction of each nanoparticle in such a
way that a ladder of equidistant energy levels emerges. By then exciting the
highest level of this ladder we produce multiple photons of the same frequency
in the THz range. We demonstrate how we can calculate a continuous material
composition profile that achieves a high quantum yield and then show that a
more experimentally friendly design of a multishell nanoparticle can still
result in a high quantum yield.Comment: 5 pages, 4 figure
Spontaneous Pattern Formation in a Polariton Condensate
Polariton condensation can be regarded as a self-organization phenomenon,
where phase ordering is established among particles in the system. In such
condensed systems, further ordering can possibly occur in the particle density
distribution, under particular experimental conditions. In this work we report
on spontaneous pattern formation in a polariton condensate under non-resonant
optical pumping. The slightly elliptical ring-shaped excitation laser we employ
is such to force condensation to occur in a single-energy state with periodic
boundary conditions, giving rise to a multi-lobe standing wave patterned state
Spontaneous polariton currents in periodic lateral chains
We predict spontaneous generation of superfluid polariton currents in planar
microcavities with lateral periodic modulation of both potential and decay
rate. A spontaneous breaking of spatial inversion symmetry of a polariton
condensate emerges at a critical pumping, and the current direction is
stochastically chosen. We analyse the stability of the current with respect to
the fluctuations of the condensate. A peculiar spatial current domain structure
emerges, where the current direction is switched at the domain walls, and the
characteristic domain size and lifetime scale with the pumping power.Comment: 6+6 pages, 4+1 figures (with supplemental material
Ballistic spin transport in exciton gases
Traditional spintronics relies on spin transport by charge carriers, such as
electrons in semiconductor crystals. This brings several complications: the
Pauli principle prevents the carriers from moving with the same speed; Coulomb
repulsion leads to rapid dephasing of electron flows. Spin-optronics is a
valuable alternative to traditional spintronics. In spin-optronic devices the
spin currents are carried by electrically neutral bosonic quasi-particles:
excitons or exciton-polaritons. They can form highly coherent quantum liquids
and carry spins over macroscopic distances. The price to pay is a finite
life-time of the bosonic spin carriers. We present the theory of exciton
ballistic spin transport which may be applied to a range of systems where
bosonic spin transport has been reported, in particular, to indirect excitons
in coupled GaAs/AlGaAs quantum wells. We describe the effect of spin-orbit
interaction of electrons and holes on the exciton spin, account for the Zeeman
effect induced by external magnetic fields, long range and short range exchange
splittings of the exciton resonances. We also consider exciton transport in the
non-linear regime and discuss the definitions of exciton spin current,
polarization current and spin conductivity.Comment: 16 pages, 10 figures to be published in Phys. Rev.
Spontaneous self-ordered states of vortex-antivortex pairs in a Polariton Condensate
Polariton condensates have proved to be model systems to investigate
topological defects, as they allow for direct and non-destructive imaging of
the condensate complex order parameter. The fundamental topological excitations
of such systems are quantized vortices. In specific configurations, further
ordering can bring the formation of vortex lattices. In this work we
demonstrate the spontaneous formation of ordered vortical states, consisting in
geometrically self-arranged vortex-antivortex pairs. A mean-field generalized
Gross-Pitaevskii model reproduces and supports the physics of the observed
phenomenology
MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease
MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury
Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities
We experimentally demonstrate a technique for the generation of optical beams
carrying orbital angular momentum using a planar semiconductor microcavity.
Despite being isotropic systems, the transverse electric - transverse magnetic
(TE-TM) polarization splitting featured by semiconductor microcavities allows
for the conversion of the circular polarization of an incoming laser beam into
the orbital angular momentum of the transmitted light field. The process
implies the formation of topological entities, a pair of optical half-vortices,
in the intracavity field
Development of new all-optical signal regeneration technique
All-optical signal regeneration have been the active research area since last decade due to evolution of nonlinear optical signal processing. Existing all-optical signal regeneration techniques are agitated in producing low Bit Error Rate (BER) of 10-10 at below than -10 dBm power received. In this paper, a new all-optical signal regeneration technique is developed by using phase sensitive amplification and designed optical phase locked signal mechanism. The developed all-optical signal regeneration technique is tested for different 10 Gb/s Differential Phase Shift Keying degraded signals. It is determined that the designed all-optical signal regeneration technique is able to provide signal regeneration with noise mitigation for degraded signals. It is analyzed that overall, for all degraded test signals, average BER of 10-13 is achieved at received power of -14 dBm. The designed technique will be helpful to enhance the performance of existing signal regeneration systems in the presence of severe noise by providing minimum BER at low received power
Probing the Dynamics of Spontaneous Quantum Vortices in Polariton Superfluids
The experimental investigation of spontaneously created vortices is of utmost
importance for the understanding of quantum phase transitions towards a
superfluid phase, especially for two dimensional systems that are expected to
be governed by the Berezinski-Kosterlitz-Thouless physics. By means of time
resolved near-field interferometry we track the path of such vortices, created
at random locations in an exciton-polariton condensate under pulsed
non-resonant excitation, to their final pinning positions imposed by the
stationary disorder. We formulate a theoretical model that successfully
reproduces the experimental observations
- …