17 research outputs found
Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer
<p>Abstract</p> <p>Background</p> <p>Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water) represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities <it>in situ</it>.</p> <p>Results</p> <p>We report the characterization of the response of an enriched bacterial community of a 1,2-dichloroethane (1,2-DCA) contaminated aquifer to the spiking with 5 mM lactate as electron donor in microcosm studies. After 15 days of incubation, the microbial community structure was analyzed. The bacterial 16S rRNA gene clone library showed that the most represented phylogenetic group within the consortium was affiliated with the phylum <it>Firmicutes</it>. Among them, known degraders of chlorinated compounds were identified. A reductive dehalogenase genes clone library showed that the community held four phylogenetically-distinct catalytic enzymes, all conserving signature residues previously shown to be linked to 1,2-DCA dehalogenation.</p> <p>Conclusions</p> <p>The overall data indicate that the enriched bacterial consortium shares the metabolic functionality between different members of the microbial community and is characterized by a high functional redundancy. These are fundamental features for the maintenance of the community's functionality, especially under stress conditions and suggest the feasibility of a bioremediation treatment with a potential prompt dehalogenation and a process stability over time.</p
Quantifying Community Dynamics of Nitrifiers in Functionally Stable Reactorsâ–¿ â€
A sequential batch reactor (SBR) and a membrane bioreactor (MBR) were inoculated with the same sludge from a municipal wastewater treatment plant, supplemented with ammonium, and operated in parallel for 84 days. It was investigated whether the functional stability of the nitrification process corresponded with a static ammonia-oxidizing bacterial (AOB) community. The SBR provided complete nitrification during nearly the whole experimental run, whereas the MBR showed a buildup of 0 to 2 mg nitrite-N liter−1 from day 45 until day 84. Based on the denaturing gradient gel electrophoresis profiles, two novel approaches were introduced to characterize and quantify the community dynamics and interspecies abundance ratios: (i) the rate of change [Δt(week)] parameter and (ii) the Pareto-Lorenz curve distribution pattern. During the whole sampling period, it was observed that neither of the reactor types maintained a static microbial community and that the SBR evolved more gradually than the MBR, particularly with respect to AOB (i.e., average weekly community changes of 12.6% ± 5.2% for the SBR and 24.6% ± 14.3% for the MBR). Based on the Pareto-Lorenz curves, it was observed that only a small group of AOB species played a numerically dominant role in the nitritation of both reactors, and this was true especially for the MBR. The remaining less dominant species were speculated to constitute a reserve of AOB which can proliferate to replace the dominant species. The value of these parameters in terms of tools to assist the operation of activated-sludge systems is discussed
High reproducibility of ammonia-oxidizing bacterial communities in parallel sequential batch reactors
Aims: To investigate whether the ammonia-oxidizing bacterial (AOB) communities of replicate nitrifying bioreactors (i) co-evolve or diverge over time and (ii) are stable or dynamic during periods of complete nitrification.
Methods and Results: Three sequential batch reactors (SBR) were inoculated with sludge from a municipal wastewater treatment plant, fed with ammonium- enriched tap water and operated in parallel for 134 days. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) demonstrated co-evolvement of the AOB communities over time. During start-up, temporary decreases in nitrification were noticed, and the AOB community rate of change values (Delta(t(week))) were medium to high (12-22%). During the adjacent period of complete nitrification, low AOB community dynamics were observed (Delta(t)(week) < 5%). Further pragmatic processing of the DGGE profiles revealed a high range-weighted richness and a medium functional organization of the AOB communities.
Conclusions: After a start-up period, high functional stability and low dynamics of the AOB communities were observed. Deterministic rather than stochastic driving forces led to AOB community co-evolvement in the replicate SBR.
Significance and Impact of the Study: Replicates in identical set-ups are reproducible, and pragmatic processing of DGGE patterns is a straightforward tool to score and compare the functionality of the bacterial communities
How to get more out of molecular fingerprints: practical tools for microbial ecology
Community-level molecular techniques are widely used in comparative microbial ecology to assess the diversity of microbial communities and their response to changing environments. These include among others denaturing and temperature gradient gel electrophoresis (DGGE/TGGE), single-strand conformation polymorphism (SSCP), length heterogeneity-PCR (LH-PCR), terminal-restriction fragment length polymorphism (tRFLP) and 16S rRNA gene clone libraries. The amount of data derived from these techniques available in literature is continuously increasing and the lack of a universal way to interpret the raw fingerprint itself makes it difficult to compare between different results. Taking the DGGE technique as an example, we propose a setting-independent theoretical interpretation of the DGGE pattern, based on a straightforward processing on three levels of analysis: (i) the range-weighted richness (Rr) reflecting the carrying capacity of the system, (ii) the dynamics (Dy) reflecting the specific rate of species coming to significance, and (iii) functional organization (Fo), defined through a relation between the structure of a microbial community and its functionality. These Rr, Dy and Fo values, each representing a score to describe a microbial community, can be plotted in a 3D graph. The latter represents a visual ecological interpretation of the initial raw fingerprinting pattern
Impact of Agricultural Practices on the Zea mays L. Endophytic Community
Agricultural practices are known to alter bulk soil microbial communities, but little is known about the effect of such practices on the plant endophytic community. We assessed the influence of long-term applications (20 years) of herbicides and different fertilizer types on the endophytic community of maize plants grown in different field experiments. Nested PCR-denaturing gradient gel electrophoresis (DGGE) analyses targeting general bacteria, type I or II methanotrophs, actinomycetes, and general fungi were used to fingerprint the endophytic community in the roots of Zea mays L. Low intraplant variability (reproducible DGGE patterns) was observed for the bacterial, type I methanotroph, and fungal communities, whereas the patterns for endophytic actinomycetes exhibited high intraplant variability. No endophytic amplification product was obtained for type II methanotrophs. Cluster and stability analysis of the endophytic type I methanotroph patterns differentiated maize plants cultivated by using mineral fertilizer from plants cultivated by using organic fertilizer with a 100% success rate. In addition, lower methanotroph richness was observed for mineral-fertilized plants than for organically fertilized plants. The use of herbicides could not be traced by fingerprinting the endophytic type I methanotrophs or by evaluating any other endophytic microbial group. Our results indicate that the effect of agrochemicals is not limited to the bulk microbial community but also includes the root endophytic community. It is not clear if this effect is due to a direct effect on the root endophytic community or is due to changes in the bulk community, which are then reflected in the root endophytic community
Cultivation of Denitrifying Bacteria: Optimization of Isolation Conditions and Diversity Study
An evolutionary algorithm was applied to study the complex interactions between medium parameters and their effects on the isolation of denitrifying bacteria, both in number and in diversity. Growth media with a pH of 7 and a nitrogen concentration of 3 mM, supplemented with 1 ml of vitamin solution but not with sodium chloride or riboflavin, were the most successful for the isolation of denitrifiers from activated sludge. The use of ethanol or succinate as a carbon source and a molar C/N ratio of 2.5, 20, or 25 were also favorable. After testing of 60 different medium parameter combinations and comparison with each other as well as with the standard medium Trypticase soy agar supplemented with nitrate, three growth media were highly suitable for the cultivation of denitrifying bacteria. All evaluated isolation conditions were used to study the cultivable denitrifier diversity of activated sludge from a municipal wastewater treatment plant. One hundred ninety-nine denitrifiers were isolated, the majority of which belonged to the Betaproteobacteria (50.4%) and the Alphaproteobacteria (36.8%). Representatives of Gammaproteobacteria (5.6%), Epsilonproteobacteria (2%), and Firmicutes (4%) and one isolate of the Bacteroidetes were also found. This study revealed a much more diverse denitrifying community than that previously described in cultivation-dependent research on activated sludge