632 research outputs found
Extreme Ultraviolet Emission from Clusters of Galaxies: Inverse Compton Radiation from a Relic Population of Cosmic Ray Electrons?
We suggest that the luminous extreme ultraviolet (EUV) emission which has
been detected recently from clusters of galaxies is Inverse Compton (IC)
scattering of Cosmic Microwave Background (CMB) radiation by low energy cosmic
ray electrons in the intracluster medium. The cosmic ray electrons would have
Lorentz factors of gamma ~ 300, and would lose energy primarily by emitting EUV
radiation. These particles have lifetimes comparable to the Hubble time; thus,
the electrons might represent a relic population of cosmic rays produced by
nonthermal activity over the history of the cluster. The IC model naturally
explains the observed increase in the ratio of EUV to X-ray emission with
radius in clusters. The required energy in cosmic ray electrons is typically
1--10% of the thermal energy content of the intracluster gas. We suggest that
the cosmic ray electrons might have been produced by supernovae in galaxies, by
radio galaxies, or by particle acceleration in intracluster shocks.Comment: ApJ Letters, in press, 4 pages with 1 embedded figure, Latex in
emulateapj styl
A massive warm baryonic halo in the Coma cluster
Several deep PSPC observations of the Coma cluster reveal a very large-scale
halo of soft X-ray emission, substantially in excess of the well known
radiation from the hot intra-cluster medium. The excess emission, previously
reported in the central region of the cluster using lower-sensitivity EUVE and
ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the
soft excess radiation from clusters is a phenomenon of cosmological
significance. The X-ray spectrum at these large radii cannot be modeled
non-thermally, but is consistent with the original scenario of thermal emission
from warm gas at ~ 10^6 K. The mass of the warm gas is on par with that of the
hot X-ray emitting plasma, and significantly more massive if the warm gas
resides in low-density filamentary structures. Thus the data lend vital support
to current theories of cosmic evolution, which predict that at low redshift
\~30-40 % of the baryons reside in warm filaments converging at clusters of
galaxies.Comment: Astrophysical Journal, in pres
Non-thermal Origin of the EUV and Soft X-rays from the Coma Cluster - Cosmic Rays in Equipartition with the Thermal Medium
The role of cosmic rays (CR) in the formation and evolution of clusters of
galaxies has been much debated. It may well be related to other fundamental
questions, such as the mechanism which heats and virializes the intracluster
medium (ICM), and the frequency at which the ICM is shocked. There is now
compelling evidence both from the cluster soft excess (CSE) and the `hard-tail'
emissions at energies above 10 keV, that many clusters are luminous sources of
inverse-Compton (IC) emission. This is the first direct measurement of cluster
CR: the technique is free from our uncertainties in the ICM magnetic field, and
is not limited to the small subset of clusters which exhibit radio halos. The
CSE emitting electrons fall within a crucial decade of energy where they have
the least spectral evolution, and where most of the CR pressure resides.
However their survival times do not date them back to the relic CR population.
By using the CSE data of the Coma cluster, we demonstrate that the CR are
energetically as important as the thermal ICM: the two components are in
pressure equiparition. Thus, contrary to previous expectations, CR are a
dominant component of the ICM, and their origin and effects should be explored.
The best-fit CR spectral index is in agreement with the Galactic value.Comment: ApJ accepted; 10 pages LaTeX; 2 figures and 1 table in PostScrip
Time Uncertainty in Quantum Gravitational Systems
It is generally argued that the combined effect of Heisenberg principle and
general relativity leads to a minimum time uncertainty. Most of the analyses
supporting this conclusion are based on a perturbative approach to
quantization. We consider a simple family of gravitational models, including
the Einstein-Rosen waves, in which the (non-linearized) inclusion of gravity
changes the normalization of time translations by a monotonic energy-dependent
factor. In these circumstances, it is shown that a maximum time resolution
emerges non-perturbatively only if the total energy is bounded. Perturbatively,
however, there always exists a minimum uncertainty in the physical time.Comment: (4 pages, no figures) Accepted for publication in Physical Review
The Physics of Cluster Mergers
Clusters of galaxies generally form by the gravitational merger of smaller
clusters and groups. Major cluster mergers are the most energetic events in the
Universe since the Big Bang. Some of the basic physical properties of mergers
will be discussed, with an emphasis on simple analytic arguments rather than
numerical simulations. Semi-analytic estimates of merger rates are reviewed,
and a simple treatment of the kinematics of binary mergers is given. Mergers
drive shocks into the intracluster medium, and these shocks heat the gas and
should also accelerate nonthermal relativistic particles. X-ray observations of
shocks can be used to determine the geometry and kinematics of the merger. Many
clusters contain cooling flow cores; the hydrodynamical interactions of these
cores with the hotter, less dense gas during mergers are discussed. As a result
of particle acceleration in shocks, clusters of galaxies should contain very
large populations of relativistic electrons and ions. Electrons with Lorentz
factors gamma~300 (energies E = gamma m_e c^2 ~ 150 MeV) are expected to be
particularly common. Observations and models for the radio, extreme
ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles
accelerated in these mergers are described.Comment: 38 pages with 9 embedded Postscript figures. To appear in Merging
Processes in Clusters of Galaxies, edited by L. Feretti, I. M. Gioia, and G.
Giovannini (Dordrecht: Kluwer), in press (2001
ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H−1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation
Fluid phonons and inflaton quanta at the protoinflationary transition
Quantum and thermal fluctuations of an irrotational fluid are studied across
the transition regime connecting a protoinflationary phase of decelerated
expansion to an accelerated epoch driven by a single inflaton field. The
protoinflationary inhomogeneities are suppressed when the transition to the
slow roll phase occurs sharply over space-like hypersurfaces of constant energy
density. If the transition is delayed, the interaction of the quasi-normal
modes related, asymptotically, to fluid phonons and inflaton quanta leads to an
enhancement of curvature perturbations. It is shown that the dynamics of the
fluctuations across the protoinflationary boundaries is determined by the
monotonicity properties of the pump fields controlling the energy transfer
between the background geometry and the quasi-normal modes of the fluctuations.
After corroborating the analytical arguments with explicit numerical examples,
general lessons are drawn on the classification of the protoinflationary
transition.Comment: 30 pages, 3 figure
Neutralinos and the Origin of Radio Halos in Clusters of Galaxies
We assume that the supersymmetric lightest neutralino is a good candidate for
the CDM and explore the possibility to produce diffuse radio emission from
high-energy electrons arising from the neutralino annihilation in galaxy
clusters whose intracluster medium is filled with a large-scale magnetic field.
We show that these electrons fit the population of seed relativistic electrons
postulated in many models for the origin of cluster radio halos. For magnetic
fields with central values G (depending on the DM profile),
the population of seed relativistic electrons from neutralino annihilation can
fit the radio halo spectra of Coma and 1E0657-56. The shape and the frequency
extension of the radio halo spectra are connected with the mass and physical
composition of the neutralino. A pure-gaugino neutralino with mass GeV can reasonably fit the spectra of both Coma and 1E0657-56. This
model provides a number of extra predictions that make it definitely testable.
On the one hand, it agrees with the observations that {\it (i)} the radio halo
is centered on the cluster dynamical center, usually coincident with the X-ray
center, {\it (ii)} the radio halo surface brightness is similar to the X-ray
one, and {\it (iii)} the monochromatic radio luminosity at 1.4 GHz correlates
strongly with the IC gas temperature. On the other hand, the model predicts
that radio halos should be present in every cluster, which is not actually
observed, although the predicted radio halo luminosities can change by a large
amount (), depending on the amplitude and the structure of
the IC magnetic field. Also, neutral pions arising from neutralino annihilation
should give rise to substantial gamma-ray emission that could be tested by the
next generation gamma-ray experiments.Comment: 49 pages, 11 Figures, Latex (using epsfig), submitted to The
Astrophysical Journal. submitted to The Astrophysical Journa
- …