39 research outputs found

    Model-independent and model-based local lensing properties of CL0024+1654 from multiply-imaged galaxies

    Full text link
    We investigate to which precision local magnification ratios, J\mathcal{J}, ratios of convergences, ff, and reduced shears, g=(g1,g2)g = (g_{1}, g_{2}), can be determined model-independently for the five resolved multiple images of the source at zs=1.675z_\mathrm{s}=1.675 in CL0024. We also determine if a comparison to the respective results obtained by the parametric modelling program Lenstool and by the non-parametric modelling program Grale can detect biases in the lens models. For these model-based approaches we additionally analyse the influence of the number and location of the constraints from multiple images on the local lens properties determined at the positions of the five multiple images of the source at zs=1.675z_\mathrm{s}=1.675. All approaches show high agreement on the local values of J\mathcal{J}, ff, and gg. We find that Lenstool obtains the tightest confidence bounds even for convergences around one using constraints from six multiple image systems, while the best Grale model is generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass corrections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches. Our results are in agreement with previous findings, supporting the light-traces-mass assumption and the merger hypothesis for CL0024. Comparing the three different approaches allows to detect modelling biases. Given that the lens properties remain approximately constant over the extension of the image areas covered by the resolvable brightness features, the model-independent approach determines the local lens properties to a comparable precision but within less than a second. (shortened)Comment: 22 pages, published in A&A 612 A17, comments welcom

    Mass-Galaxy offsets in Abell 3827, 2218 and 1689: intrinsic properties or line-of-sight substructures?

    Full text link
    We have made mass maps of three strong-lensing clusters, Abell 3827, Abell 2218 and Abell 1689, in order to test for mass-light offsets. The technique used is GRALE, which enables lens reconstruction with minimal assumptions, and specifically with no information about the cluster light being given. In the first two of these clusters, we find local mass peaks in the central regions that are displaced from the nearby galaxies by a few to several kpc. These offsets {\em could\/} be due to line of sight structure unrelated to the clusters, but that is very unlikely, given the typical levels of chance line-of-sight coincidences in ΛCDM\Lambda CDM simulations --- for Abell 3827 and Abell 2218 the offsets appear to be intrinsic. In the case of Abell 1689, we see no significant offsets in the central region, but we do detect a possible line of sight structure: it appears only when sources at z\ga 3 are used for reconstructing the mass. We discuss possible origins of the mass-galaxy offsets in Abell 3827 and Abell 2218: these include pure gravitational effects like dynamical friction, but also non-standard mechanisms like self-interacting dark-matter.Comment: 14 pages, 9 figures; Accepted for publication in MNRA

    Multiply-imaged time-varying sources behind galaxy clusters - Comparing FRBs to QSOs, SNe, and GRBs

    Full text link
    With upcoming (continuum) surveys of high-resolution radio telescopes, detection rates of fast radio bursts (FRBs) might approach 10510^5 per sky per day by future extremely large observatories, such as the possible extension of the Square Kilometer Array (SKA) to a phase 2 array. Depending on the redshift distribution of FRBs and using the repeating FRB121102 as a model, we calculate a detection rate of multiply-imaged FRBs with their multiply-imaged hosts caused by the distribution of galaxy-cluster scale gravitational lenses of the order of 10410^{-4} per square degree per year for a minimum total flux of the host of 10 μ\muJy at 1.4 GHz for SKA phase 2. Our comparison of estimated detection rates for quasars, supernovae, gamma ray bursts, and FRBs shows that multiple images of FRBs could be more numerous than those of gamma ray bursts and supernovae and as numerous as multiple images of quasars. Time delays between the multiple images of an FRB break degeneracies in model-based and model-independent lens reconstructions as other time-varying sources do, yet without a microlensing bias as FRBs are more point-like and have shorter duration times. We estimate the relative imprecision of FRB time-delay measurements to be 101010^{-10} for time delays on the order of 100 days for galaxy-cluster scale lenses, yielding more precise (local) lens properties than time delays from the other time-varying sources. Using the lens modelling software Grale, we show the increase in accuracy and precision of the reconstructed scaled surface mass density map of a simulated cluster-scale lens when adding time delays for one set of multiple images to the set of observational constraints.Comment: 16 pages, 8 figures, accepted for publication in Astronomy & Astrophysics, comments welcom

    Quantifying substructures in {\it Hubble Frontier Field} clusters: comparison with ΛCDM\Lambda CDM simulations

    Full text link
    The Hubble Frontier Fields (HFF) are six clusters of galaxies, all showing indications of recent mergers, which have recently been observed for lensed images. As such they are the natural laboratories to study the merging history of galaxy clusters. In this work, we explore the 2D power spectrum of the mass distribution PM(k)P_{\rm M}(k) as a measure of substructure. We compare PM(k)P_{\rm M}(k) of these clusters (obtained using strong gravitational lensing) to that of Λ\LambdaCDM simulated clusters of similar mass. To compute lensing PM(k)P_{\rm M}(k), we produced free-form lensing mass reconstructions of HFF clusters, without any light traces mass (LTM) assumption. The inferred power at small scales tends to be larger if (i)~the cluster is at lower redshift, and/or (ii)~there are deeper observations and hence more lensed images. In contrast, lens reconstructions assuming LTM show higher power at small scales even with fewer lensed images; it appears the small scale power in the LTM reconstructions is dominated by light information, rather than the lensing data. The average lensing derived PM(k)P_{\rm M}(k) shows lower power at small scales as compared to that of simulated clusters at redshift zero, both dark-matter only and hydrodynamical. The possible reasons are: (i)~the available strong lensing data are limited in their effective spatial resolution on the mass distribution, (ii)~HFF clusters have yet to build the small scale power they would have at z0z\sim 0, or (iii)~simulations are somehow overestimating the small scale power.Comment: 13 pages, 10 figures, 1 table; Accepted for publication in MNRA

    SimpactCyan 1.0 : an open-source simulator for individual-based models in HIV epidemiology with R and Python interfaces

    Get PDF
    SimpactCyan is an open-source simulator for individual-based models in HIV epidemiology. Its core algorithm is written in C++ for computational efficiency, while the R and Python interfaces aim to make the tool accessible to the fast-growing community of R and Python users. Transmission, treatment and prevention of HIV infections in dynamic sexual networks are simulated by discrete events. A generic “intervention” event allows model parameters to be changed over time, and can be used to model medical and behavioural HIV prevention programmes. First, we describe a more efficient variant of the modified Next Reaction Method that drives our continuous-time simulator. Next, we outline key built-in features and assumptions of individual-based models formulated in SimpactCyan, and provide code snippets for how to formulate, execute and analyse models in SimpactCyan through its R and Python interfaces. Lastly, we give two examples of applications in HIV epidemiology: the first demonstrates how the software can be used to estimate the impact of progressive changes to the eligibility criteria for HIV treatment on HIV incidence. The second example illustrates the use of SimpactCyan as a data-generating tool for assessing the performance of a phylodynamic inference framework

    Extrapolating the projected potential of gravitational lens models: property-preserving degeneracies

    Full text link
    While gravitational lens inversion holds great promise to reveal the structure of the light-deflecting mass distribution, both light and dark, the existence of various kinds of degeneracies implies that care must be taken when interpreting the resulting lens models. This article illustrates how thinking in terms of the projected potential helps to gain insight into these matters. Additionally it is shown explicitly how, when starting from a discretised version of the projected potential of one particular lens model, the technique of quadratic programming can be used to create a multitude of equivalent lens models that preserve all or a subset of lens properties. This method is applied to a number of scenarios, showing the lack of grasp on the mass outside the strong lensing region, revisiting mass redistribution in between images and applying this to a recent model of the SDSS J1004+4112 cluster, as well as illustrating the generalised mass sheet degeneracy and source-position transformation. In the case of J1004 we show that this mass redistribution did not succeed at completely eliminating a dark mass clump recovered by GRALE near one of the quasar images.Comment: 12 pages, 9 figures, MNRAS accepte
    corecore