16 research outputs found

    Diagnosis of Lung Cancer: What Metabolomics Can Contribute

    Get PDF
    The reprogrammed metabolism of cancer cells reflects itself in an alteration of metabolite concentrations, which in turn can be used to define a specific metabolic phenotype or fingerprint for cancer. In this contribution, a metabolism-based discrimination between lung cancer patients and healthy controls, derived from an analysis of human blood plasma by proton nuclear magnetic resonance (1H-NMR) spectroscopy, is described. This technique is becoming widely used in the field of metabolomics because of its ability to provide a highly informative spectrum, representing the relative metabolite concentrations. Cancer types are characterized by decreased or increased levels of specific plasma metabolites, such as glucose or lactate, compared to controls. Data analysis by multivariate statistics provides a classification model with high levels of sensitivity and specificity. Nuclear magnetic resonance (NMR) metabolomics might not only contribute to the diagnosis of lung cancer but also shows potential for treatment follow-up as well as for paving the way to a better understanding of disease-related diverting biochemical pathways

    Repeatability of two semi-automatic artificial intelligence approaches for tumor segmentation in PET

    Get PDF
    Background: Positron emission tomography (PET) is routinely used for cancer staging and treatment follow-up. Metabolic active tumor volume (MATV) as well as total MATV (TMATV—including primary tumor, lymph nodes and metastasis) and/or total lesion glycolysis derived from PET images have been identified as prognostic factor or for the evaluation of treatment efficacy in cancer patients. To this end, a segmentation approach with high precision and repeatability is important. However, the implementation of a repeatable and accurate segmentation algorithm remains an ongoing challenge. Methods: In this study, we compare two semi-automatic artificial intelligence (AI)-based segmentation methods with conventional semi-automatic segmentation approaches in terms of repeatability. One segmentation approach is based on a textural feature (TF) segmentation approach designed for accurate and repeatable segmentation of primary tumors and metastasis. Moreover, a convolutional neural network (CNN) is trained. The algorithms are trained, validated and tested using a lung cancer PET dataset. The segmentation accuracy of both segmentation approaches is compared using the Jaccard coefficient (JC). Additionally, the approaches are externally tested on a fully independent test–retest dataset. The repeatability of the methods is compared with those of two majority vote (MV2, MV3) approaches, 41%SUVMAX, and a SUV > 4 segmentation (SUV4). Repeatability is assessed with test–retest coefficients (TRT%) and intraclass correlation coefficient (ICC). An ICC > 0.9 was regarded as representing excellent repeatability. Results: The accuracy of the segmentations with the reference segmentation was good (JC median TF: 0.7, CNN: 0.73). Both segmentation approaches outperformed most other conventional segmentation methods in terms of test–retest coefficient (TRT% mean: TF: 13.0%, CNN: 13.9%, MV2: 14.1%, MV3: 28.1%, 41%SUVMAX: 28.1%, SUV4: 18.1%) and ICC (TF: 0.98, MV2: 0.97, CNN: 0.99, MV3: 0.73, SUV4: 0.81, and 41%SUVMAX: 0.68). Conclusion: The semi-automatic AI-based segmentation approaches used in this study provided better repeatability than conventional segmentation approaches. Moreover, both algorithms lead to accurate segmentations for both primary tumors as well as metastasis and are therefore good candidates for PET tumor segmentation

    Changes in Metabolism as a Diagnostic Tool for Lung Cancer: Systematic Review

    No full text
    Lung cancer is the leading cause of cancer-related mortality worldwide, with five-year survival rates varying from 3–62%. Screening aims at early detection, but half of the patients are diagnosed in advanced stages, limiting therapeutic possibilities. Positron emission tomography-computed tomography (PET-CT) is an essential technique in lung cancer detection and staging, with a sensitivity reaching 96%. However, since elevated 18F-fluorodeoxyglucose (18F-FDG) uptake is not cancer-specific, PET-CT often fails to discriminate between malignant and non-malignant PET-positive hypermetabolic lesions, with a specificity of only 23%. Furthermore, discrimination between lung cancer types is still impossible without invasive procedures. High mortality and morbidity, low survival rates, and difficulties in early detection, staging, and typing of lung cancer motivate the search for biomarkers to improve the diagnostic process and life expectancy. Metabolomics has emerged as a valuable technique for these pitfalls. Over 150 metabolites have been associated with lung cancer, and several are consistent in their findings of alterations in specific metabolite concentrations. However, there is still more variability than consistency due to the lack of standardized patient cohorts and measurement protocols. This review summarizes the identified metabolic biomarkers for early diagnosis, staging, and typing and reinforces the need for biomarkers to predict disease progression and survival and to support treatment follow-up

    Unraveling the Rewired Metabolism in Lung Cancer Using Quantitative NMR Metabolomics

    No full text
    Lung cancer cells are well documented to rewire their metabolism and energy production networks to enable proliferation and survival in a nutrient-poor and hypoxic environment. Although metabolite profiling of blood plasma and tissue is still emerging in omics approaches, several techniques have shown potential in cancer diagnosis. In this paper, the authors describe the alterations in the metabolic phenotype of lung cancer patients. In addition, we focus on the metabolic cooperation between tumor cells and healthy tissue. Furthermore, the authors discuss how metabolomics could improve the management of lung cancer patients

    Prognostic value of total lesion glycolysis and metabolic active tumor volume in non-small cell lung cancer

    No full text
    Introduction: To predict the outcome of patients with non-small cell lung cancer (NSCLC) the currently used prognostic system (TNM) is not accurate enough. The prognostic significance of the SUVmax measured by PET remains controversial. This study aims to evaluate the prognostic value in overall survival and progression free survival of SUVmax, the total lesion glycolysis (TLG) and the mean metabolic active volume (MATV) in NSCLC. Methods: We retrospectively reviewed 105 patients (72 males, 33 females) with a new diagnosis of NSCLC (TNM stage I: 27.6%, II: 10.5%, III: 40.9% and IV: 21.0%) who underwent scanning with a PET/CT. For VOI definition a semi-automatic delineation tool was used. On PET images SUVmax, SUVmean and MATV of the primary tumor and the whole tumor burden were measured. TLG and MATV were measured by using a threshold of 50% of SUVmax. Results: OS and PFS are found to be higher in patients with low-SUVTmax and low-TLGT values. OS and PFS were significantly higher for low-SUVWTBmax, low-MATVWTB and low-TLGWTB values of the whole-tumor burden. Multivariate analysis of the whole-tumor burden revealed that the most important prognostic factors for OS are high MATVWTB and TLGWTB values, increasing stage and male gender. TLGWTB and stage are also independent prognosticators in PFS. Conclusion: Only whole-body TLG is of prognostic value in NSCLC for both OS and PFS. Stratification of patients by TLGWTB might complement outcome prediction but the TNM stage remains the most important determinant of prognosis. In order to predict the outcome of patients with non-small cell lung cancer (NSCLC) the currently used prognostic system (TNM) is not accurate enough. The prognostic significance of the standard uptake value (SUV) measured by PET remains controversial. This study aims to evaluate the prognostic value in overall survival (OS) and progression free survival (PFS) of the standard uptake value (SUV), the total lesion glycolysis (TLG) and the mean metabolic active volume (MATV) in NSCLC. The study reveals that TLG of the whole-tumor burden is an independent prognostic factor for OS and PFS in patients with NSCLC

    Glutamine Addiction and Therapeutic Strategies in Lung Cancer

    No full text
    Lung cancer cells are well-documented to rewire their metabolism and energy production networks to support rapid survival and proliferation. This metabolic reorganization has been recognized as a hallmark of cancer. The increased uptake of glucose and the increased activity of the glycolytic pathway have been extensively described. However, over the past years, increasing evidence has shown that lung cancer cells also require glutamine to fulfill their metabolic needs. As a nitrogen source, glutamine contributes directly (or indirectly upon conversion to glutamate) to many anabolic processes in cancer, such as the biosynthesis of amino acids, nucleobases, and hexosamines. It plays also an important role in the redox homeostasis, and last but not least, upon conversion to α-ketoglutarate, glutamine is an energy and anaplerotic carbon source that replenishes tricarboxylic acid cycle intermediates. The latter is generally indicated as glutaminolysis. In this review, we explore the role of glutamine metabolism in lung cancer. Because lung cancer is the leading cause of cancer death with limited curative treatment options, we focus on the potential therapeutic approaches targeting the glutamine metabolism in cancer

    Metabolic phenotyping of human blood plasma: a powerful tool to discriminate between cancer types?

    No full text
    Accumulating evidence has shown that cancer cell metabolism differs from that of normal cells. However, up to now it is not clear whether different cancer types are characterized by a specific metabolite profile. Therefore, this study aims to evaluate whether the plasma metabolic phenotype allows to discriminate between lung and breast cancer.status: publishe

    NMR-Metabolomics Reveals a Metabolic Shift after Surgical Resection of Non-Small Cell Lung Cancer

    No full text
    Background: Lung cancer can be detected by measuring the patient’s plasma metabolomic profile using nuclear magnetic resonance (NMR) spectroscopy. This NMR-based plasma metabolomic profile is patient-specific and represents a snapshot of the patient’s metabolite concentrations. The onset of non-small cell lung cancer (NSCLC) causes a change in the metabolite profile. However, the level of metabolic changes after complete NSCLC removal is currently unknown. Patients and methods: Fasted pre- and postoperative plasma samples of 74 patients diagnosed with resectable stage I-IIIA NSCLC were analyzed using 1H-NMR spectroscopy. NMR spectra (s = 222) representing two preoperative and one postoperative plasma metabolite profile at three months after surgical resection were obtained for all patients. In total, 228 predictors, i.e., 228 variables representing plasma metabolite concentrations, were extracted from each NMR spectrum. Two types of supervised multivariate discriminant analyses were used to train classifiers presenting a strong differentiation between the pre- and postoperative plasma metabolite profiles. The validation of these trained classification models was obtained by using an independent dataset. Results: A trained multivariate discriminant classification model shows a strong differentiation between the pre- and postoperative NSCLC profiles with a specificity of 96% (95% CI [86–100]) and a sensitivity of 92% (95% CI [81–98]). Validation of this model results in an excellent predictive accuracy of 90% (95% CI [77–97]) and an AUC value of 0.97 (95% CI [0.93–1]). The validation of a second trained model using an additional preoperative control sample dataset confirms the separation of the pre- and postoperative profiles with a predictive accuracy of 93% (95% CI [82–99]) and an AUC value of 0.97 (95% CI [0.93–1]). Metabolite analysis reveals significantly increased lactate, cysteine, asparagine and decreased acetate levels in the postoperative plasma metabolite profile. Conclusions: The results of this paper demonstrate that surgical removal of NSCLC generates a detectable metabolic shift in blood plasma. The observed metabolic shift indicates that the NSCLC metabolite profile is determined by the tumor’s presence rather than donor-specific features. Furthermore, the ability to detect the metabolic difference before and after surgical tumor resection strongly supports the prospect that NMR-generated metabolite profiles via blood samples advance towards early detection of NSCLC recurrence

    Detection of Lung Cancer through Metabolic Changes Measured in Blood Plasma

    No full text
    Low-dose computed tomography, the currently used tool for lung cancer screening, is characterized by a high rate of false-positive results. Accumulating evidence has shown that cancer cell metabolism differs from that of normal cells. Therefore, this study aims to evaluate whether the metabolic phenotype of blood plasma allows detection of lung cancer.publisher: Elsevier articletitle: Detection of Lung Cancer through Metabolic Changes Measured in Blood Plasma journaltitle: Journal of Thoracic Oncology articlelink: http://dx.doi.org/10.1016/j.jtho.2016.01.011 content_type: article copyright: Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.status: publishe

    Textural Feature Based Segmentation: A Repeatable and Accurate Segmentation Approach for Tumors in PET Images

    No full text
    In oncology, Positron Emission Tomography (PET) is frequently performed for cancer staging and treatment monitoring. Metabolic active tumor volume (MATV) as well as total MATV (TMATV - including primary tumor, lymph nodes and metastasis) derived from PET images have been identified as prognostic factor or for evaluating treatment efficacy in cancer patients. To this end a segmentation approach with high precision and repeatability is important. Moreover, to derive TMATV, a reliable segmentation of the primary tumor as well as all metastasis is essential. However, the implementation of a repeatable and accurate segmentation algorithm remains a challenge. In this work, we propose an artificial intelligence based segmentation method based on textural features (TF) extracted from the PET image. From a large number of textural features, the most important features for the segmentation task were selected. The selected features are used for training a random forest classifier to identify voxels as tumor or background. The algorithm is trained, validated and tested using a lung cancer PET/CT dataset and, additionally, applied on a fully independent test-retest dataset. The approach is especially designed for accurate and repeatable segmentation of primary tumors and metastasis in order to derive TMATV. The segmentation results are compared with conventional segmentation approaches in terms of accuracy and repeatability. In summary, the TF segmentation proposed in this study provided better repeatability and accuracy than conventional segmentation approaches. Moreover, segmentations were accurate for both primary tumors and metastasis and the proposed algorithm is therefore a good candidate for PET tumor segmentation
    corecore