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Abstract

The reprogrammed metabolism of cancer cells reflects itself in an alteration of metabolite 
concentrations, which in turn can be used to define a specific metabolic phenotype or fin-
gerprint for cancer. In this contribution, a metabolism-based discrimination between lung 
cancer patients and healthy controls, derived from an analysis of human blood plasma by 
proton nuclear magnetic resonance (1H-NMR) spectroscopy, is described. This technique 
is becoming widely used in the field of metabolomics because of its ability to provide a 
highly informative spectrum, representing the relative metabolite concentrations. Cancer 
types are characterized by decreased or increased levels of specific plasma metabolites, 
such as glucose or lactate, compared to controls. Data analysis by multivariate statistics 
provides a classification model with high levels of sensitivity and specificity. Nuclear 
magnetic resonance (NMR) metabolomics might not only contribute to the diagnosis of 
lung cancer but also shows potential for treatment follow-up as well as for paving the 
way to a better understanding of disease-related diverting biochemical pathways.

Keywords: metabolomics, human blood plasma, metabolic phenotype, 1H-NMR 
spectroscopy, metabolite spiking, multivariate OPLS-DA statistics, lung cancer, cancer 
cell metabolism, biomarker

1. Introduction

Metabolomics, or metabolite profiling, comprises the study of the entire spectrum of low-
molecular weight metabolites and their cellular processes in a biological system [1–4]. Next to 
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a large number of studies exploring the use of metabolomics in the field of disease diagnosis 
and prognosis, its application is also extended to other research areas such as toxicology [5], 

nutrition [6], microbiology [7], and drug discovery [8]. Together with high prevalence diseases 
such as diabetes [9], obesity [10–12], and neurological and cardiovascular disorders [13, 14], 

different types of malignant diseases including breast [15, 16], colorectal [17, 18], and lung 

cancer [19–24] are being extensively examined by using a metabolomics approach.

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), which can 
possibly be connected to a gas- or liquid chromatography system (GC-MS/LC-MS), are the 
analytical techniques that are primarily used in the field of metabolomics [25–27]. While 13C 
nuclei can be very useful in contribution to metabolite identification by NMR, the proton (1H) 

nucleus is mostly studied in metabolomics NMR experiments [28]. The 1H nucleus is omni-

present in metabolites, shows the highest relative sensitivity, and has a natural abundancy of 
99.98%. 1H-NMR spectroscopy is a noninvasive technique that needs no sample extractions 
and that enables the identification and quantification of metabolites in biofluids as well as 
in tissues and therefore is becoming widely used in the field of metabolomics [29]. Despite 

that 1H-NMR is less sensitive compared to MS, it has many advantages: nondestructive, easy 
quantification, low cost per sample, minimal sample preparation requirements resulting sub-

sequently in an excellent reproducibility and rapid high-throughput data acquirement [30]. 

In a single run of a few minutes, the 1H-spectrum from one sample provides information 
regarding the relative concentrations of all present metabolites. The metabolic phenotype 
provides a representative snapshot of an individual’s metabolic state and therefore enables 
the determination of cellular processes altered by disease [2].

Metabolites from a number of different diagnostic biofluids are already examined in multiple 
studies, mostly involving human blood plasma, serum, or urine [1, 22, 31, 32]. In parallel with bio-

fluids, intact tumor tissues are frequently evaluated since intra-tumor heterogeneity is currently 
one of the major causes of treatment failure [33, 34]. To that end, high-resolution magic angle 

spinning NMR (HR-MAS NMR) as an analytical approach is gaining great attention [35–38].

This review intends to point out the results of 1H-NMR metabolic profiling of lung cancer 
patients acquired by our research group and further explores the benefits which this method 
might deliver to contribute to an optimal treatment for lung cancer patients.

2. Methods

2.1. Sample collection and preparation

Experimental design focused on the analysis of fasting venous blood samples from lung cancer 
patients. Importantly, exclusion criteria were (i) not fasted for at least 6 h; (ii) fasting blood 
glucose concentration ≥ 200 mg/dl; (iii) medication intake in the morning of blood sampling, 
and (iv) treatment or history of cancer in the past 5 years, as described in the study of Louis 
et al. [20]. The blood samples were collected in lithium-heparin tubes and stored at 4°C within 
5 min. Plasma aliquots were obtained after centrifugation at 1600 g for 15 min within 8 h after 
collection. Plasma sample preparation included a centrifugation step at 13,000 g for 4 min at 
4°C and dilution of 200 μl of the supernatant with 600 μl deuterium oxide (D

2
O) containing 
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0.3 μg/μl trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) as a chemical shift reference of 
the spectra. After presaturation for water suppression, the Carr-Purcell-Meiboom-Gill (CPMG) 
pulse sequence was used to acquire slightly T2-weighted spectra on a 400 MHz (9.4 Tesla) NMR 
spectrometer [1].

2.2. Spectral processing

2.2.1. Binning

Before applying multivariate statistics, the data acquired by 1H-NMR analysis should be pre-

processed. Preprocessing of data usually includes phasing, baseline correction, alignment, 
and normalization. In addition, the spectrum has to be divided into regions of which the 
integration value (i.e., area under the peak) can be used as a variable for the statistical analysis. 
Binning or bucketing is a commonly used technique to produce such a reduced set of vari-
ables by segregating the spectrum [39]. In point-wise binning, the spectrum is divided into 
so-called equally-sized bins. An important limitation of this method is the possible splitting 
of peaks, resulting in a loss of differentiating power and possibly data misinterpretation. To 
overcome this, another methodology based on spiking of the plasma with known metabolites 
is proposed. This approach describes how the 1H-NMR spectrum is divided into well-defined 
variable-sized integrations regions, being the variables for multivariate statistical analysis [40].

2.2.2. Spiking methodology

To obtain a correct signal assignment, 1H-NMR spectra of reference plasma samples to which 

a known metabolite was spiked, were acquired. Hereto, stock solutions were prepared by dis-

solving a relevant concentration of a known metabolite in a reference plasma sample. Reference 
plasma can be obtained by pooling the plasma of several blood samples from a healthy person. 
Next, a small amount of stock solution can be added to a reference plasma NMR sample (e.g., 
10 μl stock solution to 200 μl reference plasma and 600 μl D

2
O containing the TSP reference). 

This procedure can be repeated for all metabolites of interest, using a fresh reference sample for 

each metabolite. The outcome of these spiking experiments allows an accurate identification of 
the chemical shifts and J-coupling patterns. On our 400 MHz (9.4 Tesla) NMR spectrometer, the 
described spiking method led to a segmentation of the spectra in 110 well-defined integration 
regions [40]. After integration and normalization (relative to the total integrated area, with 
exclusion of the contributions of TSP and water), these integration regions could be used as 
variables for multivariate statistical analyses.

2.3. Multivariate statistics

The statistics were carried out by using supervised orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) to train and validate a classification model which enables optimal 
discrimination between lung cancer patients and a control population. The statistical classifier 
was constructed after detection and removal of outliers in the training data set via unsuper-

vised principle component analysis (PCA). In addition, PCA was also conducted to visualize 
significant intrinsic clusters in the case–control data set upon which identification of possible 
confounders was based.
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Model characteristics such as the total explained intra- (R2X(Cum)) and intergroup (R2Y(Cum)) 
variation were examined together with sensitivity and specificity values in order to evaluate 
strength performance of the OPLS-DA classifier. Predictive ability (Q2(Cum)) of the model 
was demonstrated by cross-validation of the training set as well as by application of the 
model to an independent validation cohort.

3. Results

3.1. Detection of lung cancer

The assigned and normalized integration regions of the 1H-NMR spectrum reflect the relative 
metabolite concentrations and thus represent the metabolic phenotype. Therefore, they can be 
used as variables for multivariate OPLS-DA statistics in order to discriminate between lung 
cancer patients and healthy controls. By applying this methodology on lung cancer plasma 
samples, a classification model that enables discrimination between those two groups was 
trained. Hereto, a large training cohort consisting out of 233 lung cancer patients and 226 con-

trols was used. Characteristics of the subjects included in the training and validation cohort 
are summarized in Table 1. The trained OPLS-DA classifier resulted in a correct classification 
of 78% of the lung cancer patients and 92% of the control group (Figure 1A) [19]. To affirm 
that the discrimination was purely due to differences in plasma metabolite concentrations, 
PCA was conducted to exclude possible confounders. By means of PCA score plots, it was 
confirmed that gender, smoking status, disease, and chronic obstructive pulmonary disease 
(COPD) are no confounders [19].

While these results definitely support the applicability of this methodology for the detec-

tion of lung cancer, no clear differentiation between tumor stages or histological subtypes 
could be detected yet, that is, none of the trained OPLS-DA models already showed signifi-

cant clustering of different tumor stages or histological subtypes. This probably is due to 
the limited number of lung cancer patients in the subgroups and the diffuse character of the 
subgroups formed on the basis of histology and clinical tumor stage. However, the ability 
of a constructed OPLS-DA model to discriminate between 76 stage I lung cancer patients 
and 76 randomly selected controls with 74% sensitivity and 78% specificity strongly suggests 
that plasma metabolite phenotyping reveals the presence of lung cancer already during early 
stadia of tumor development (Figure 2) [19].

3.2. Validation of the classification model

Importantly, after training of a promising classification model, confirmation of the validity of 
the model needs to be considered. When the metabolic fingerprint of a large cohort of patients 
and controls is available, this can be realized by applying the model on an independent vali-
dation cohort consisting out of an independent group of both lung cancer patients and con-

trols. In this study, an independent cohort of 98 patients with lung cancer and 89 controls was 
used for validation of the trained model classifier. The trained model shows a high predictive 
accuracy with a sensitivity of 71% and a specificity of 81% (Figure 1B and C) [19].
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Training cohort Validation cohort

C LC C LC

Number of subjects, N 226 233 89 98

Gender, N (%)

Male 119 (53) 160 (69) 44 (49) 66 (67)

Female 107 (47) 73 (31) 45 (51) 32 (33)

Age, yrs.

(range)

67 ± 11

(38–88)

68 ± 10

(36–88)

69 ± 10

(47–89)

64 ± 9

(45–83)

BMI, kg/m2

(range)

28.3 ± 5.0

(18.7–46.7)

25.8 ± 4.5

(17.5–41.8)

28.4 ± 5.7

(16.2–52.0)

26.2 ± 4.7

(16.8–38.5)

COPD, N (%) 39 (17) 119 (51) 9 (10) 35 (36)

Taking lipid-lowering medication, N (%) 124 (55) 122 (52) 56 (63) 39 (40)

Diabetes, N (%) 23 (10) 40 (17) 20 (22) 12 (12)

Smoking habits

Smoker, N (%) 47 (21) 113 (49) 15 (17) 48 (49)

Ex-smoker, N (%) 102 (45) 110 (47) 36 (40) 46 (47)

Non-smoker, N (%) 77 (34) 10 (4) 38 (43) 4 (4)

Pack years

(range)

16 ± 24

(0–175)

33 ± 21

(0–125)

13 ± 18

(0–60)

38 ± 21

(0–150)

Laterality

Left, N (%) 103 (44) 40 (41)

Right, N (%) 119 (51) 54 (55)

Bilateral, N (%) 6 (3) 4 (4)

Unknown, N (%) 5 (2) 0 (0)

Amount of tumors, N 239 102

Histological subtype

NSCLC-Adenocarcinoma, N (%) 91 (38) 46 (45)

NSCLC-Squamous carcinoma, N (%) 66 (28) 29 (28)

NSCLC-Adenosquamous carcinoma, N (%) 5 (2) 1 (1)

NSCLC-Carcinoid, N (%) 5 (2) 0 (0)

NSCLC-NOS, N (%) 8 (3) 6 (6)

SCLC, N (%) 30 (13) 15 (15)

Unknown, N (%) 34 (14) 5 (5)

Clinical stage according to 7th TNM edition

IA, N (%) 55 (23) 12 (12)

IB, N (%) 21 (9) 5 (5)
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Training cohort Validation cohort

C LC C LC

IIA, N (%) 11 (5) 7 (7)

IIB, N (%) 15 (6) 4 (4)

IIIA, N (%) 48 (20) 17 (16)

IIIB, N (%) 26 (11) 12 (12)

IV, N (%) 63 (26) 45 (44)

BMI: Body mass index; C: controls; COPD: chronic obstructive pulmonary disease; LC: lung cancer patients; NOS: not 
otherwise specified; NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; and TNM: tumor, node, metastasis.

Table 1. Summary of the characteristics of the subjects included in the training and validation cohort.

Figure 1. OPLS-DA score plots, resulting from the classification of the training cohort of 233 lung cancer patients and 
226 controls (A) and the independent validation cohort of 98 lung cancer patients and 89 controls (C). The AUC of 
ROC curves confirms the predictive ability of the classification model by cross-validation of the training cohort and 
an independent validation model (B). AUC: Area under the curve; C: controls; CV: cross-validation; LC: lung cancer 
patients; PS: predicted scores; and ROC: receiver operating characteristic.

Figure 2. OPLS-DA score plot, resulting from the classification of 76 stage-I lung cancer patients and 76 randomly 
selected controls of the training cohort. C: Controls.
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3.3. Differentiation between cancer types

To further illustrate the potential of the methodology described above, the following para-

graph demonstrates that different cancer types are characterized by a specific metabolite 
profile. Hereto, the same workflow was applied on a data set of 54 lung cancer patients and 

Figure 3. OPLS-DA score plots, resulting from the classification of the training cohort of 54 lung cancer patients and 80 
breast cancer patients (A) and the independent validation cohort of 81 lung cancer patients and 60 breast cancer patients 
(C). The AUC of ROC curves confirms the predictive ability of the classification model by cross-validation of the training 
cohort and an independent validation model (B). AUC: Area under the curve; BC: breast cancer patients; LC: Lung 
cancer patients; PS: predicted scores; and ROC: receiver operating characteristic.

Figure 4. OPLS-DA score plot, resulting from the classification of a population of lung-, breast- and colorectal cancer 
patients, each group consisting of 37 individuals. CRC: Colorectal cancer patients; BC: breast cancer patients; and LC: 
lung cancer patients.
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80 breast cancer patients. Again, the segmentation of the spectrum was based on metabolite 
spiking and OPLS-DA statistics were used to train a classification model, this time in discrim-

inating lung cancer from breast cancer. The resulting model allows a correct classification of 
both cancer types with a sensitivity of 93% (93% of the 54 lung cancer patients were correctly 
classified) and a specificity of 99% (99% of the 80 breast cancer patients were correctly classi-
fied) (Figure 3A). Validation of the model by applying it on an independent cohort of 81 lung 
cancer patients and 60 breast cancer patients confirmed these findings and shows a sensitivity 
of 89% and a specificity of 82% (Figure 3B and C) [20]. Another recent study explored these 
promising results by establishing an OPLS-DA classification model that allows discrimina-

tion between three different types of cancers, that is, lung, breast, and colorectal cancers. After 
1H-NMR measurements of 37 plasma samples of each patient group, multivariate statistics 
revealed that each type of cancer was represented by a specific metabolic signature (Figure 4) 

[41]. Since the metabolic phenotype allows a clear differentiation between different cancer 
types, it can be assumed that the metabolic profile should not be considered as a general 
cancer marker but rather as a distinguishing characteristic of a specific cancer type.

4. Reorganization of metabolic pathways

The metabolites that contributed the most to the differentiation between lung cancer patients 
and healthy controls were identified and selected based on their variable importance for pro-

jection (VIP) value by means of an S-plot. The variables on the wings of the S-plot are the 
ones with the strongest contribution to the model and the highest statistical reliability [42]. 

Metabolic phenotyping of blood plasma shows that lung cancer patients are characterized by 
elevated glucose and decreased lactate levels, which implies an increased gluconeogenesis. 
This enhanced gluconeogenesis reflects the reaction of the human body to the Warburg effect 
or aerobic glycolysis in which, even in normoxic conditions, cancer cells rely on fermentation, 
that is, glycolysis leading to lactate production via fermentation of pyruvate. The Warburg 
effect, which takes place in cancer cells, can be observed in tumor tissue by means of 1H-NMR 

as shown by Rocha et al. They demonstrated that lung tumors of different histological subtypes 
are all characterized by lowered glucose whereas lactate levels are increased, which is supported 
by the significantly enhanced glycolytic activity of cancer cells compared to normal cells [23]. 

Moreover, lung cancer patients show decreased phospholipid plasma levels, pointing to an 
increased lipogenesis and enhanced membrane synthesis, which is correlated with increased 
proliferation of cancer cells [43–46]. Other metabolites with an increased concentration in lung 
cancer patients compared to controls are N-acetylated glycoproteins, β-hydroxybutyrate, 
leucine, lysine, tyrosine, threonine, glutamine, valine, and aspartate. Contrarily, metabolites 
showing a decreased concentration in lung cancer patients are alanine, sphingomyelin, citrate, 
chlorinated phospholipids (e.g., phosphatidylcholine), and other phospholipids [19].

5. Metabolomics in daily clinical practice

5.1. Effect of the NMR magnetic field strength

Evaluation of the advantages versus limitations of NMR spectrometers with higher magnetic 
field strength was accomplished by comparing the results obtained for the same plasma samples 
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on both a medium-field (9.4 Tesla; 400 MHz) and high-field (21.1 Tesla; 900 MHz) NMR spec-

trometer. For a 900 MHz spectrum, an improved resolution as well as a higher signal to noise 
(S/N) ratio is observed as compared to a 400 MHz spectrum (Figure 5) [47]. Because of these 

improved characteristics, measurements with a high-field spectrometer enable to define the 
integration regions more accurately using spiking experiments, resulting in less signal overlap 
and therefore in a larger number of integration regions that are representative for a single metab-

olite. Yet, discriminative power of both high- and medium-field spectra is rather comparable. 
These findings are in line with the study of Bertram et al., who demonstrated that the prediction 
performance and thus obtained information out of the spectra meant for diagnosis strongly 
increases when shifting the magnetic field strength from 250 to 500 MHz, whereas the effect of 
further increasing the magnetic field strength from 500 to 800 MHz appeared less strong when 
group discrimination is concerned [48]. However, analysis with a high-field spectrometer can be 
the preferred choice for the detection and identification of new, low-concentration metabolites 
and therefore can contribute to a better understanding of the underlying disturbed biochemical 
pathways of disease [47]. A drawback is the high cost of high-field spectrometers, which raises 
strongly with the magnetic field strength. By comparison, the cost of a 400 MHz spectrometer 
is in the order of €300,000 while a 900 MHz spectrometer can reach the cost of €2,750,000. The 
need of a supplementary cryoprobe can raise these estimated amounts even more with €200,000 
[47]. In addition, such instruments demand for an isolated building for its housing, which is less 

practical in a clinical setting. Taken all into account, medium-field (400–600 MHz) spectrometers 
will probably become the preferred instruments for future application in clinical metabolomics.

5.2. Precision medicine

The contribution of metabolic phenotyping toward the clinical environment, often referred to as 
pharmacometabolomics, can encompass the entire patient journey, starting from an improved 
screening selection and earlier diagnosis to a follow-up for treatment response prediction and 

enhanced personalized choice of therapy [49]. Despite several challenges that accompany the 
implementation of such a unique innovative technique, for example, biomarker validation and 
cost-effectiveness [49, 50], the authors are highly convinced that metabolism-based biomark-

ers carry the potential to significantly contribute to future daily standard clinical practice.

Figure 5. Comparison of the 1H-NMR spectra of human blood plasma acquired at a high-field (900 MHz) (top) and 
medium-field (400 MHz) (bottom) spectrometer. Both spectra are zoomed-in between 0.80 and 1.10 ppm. The top 
spectrum shows an increased resolution and improved S/N ratio. The paired labeled peaks each represent a methyl 
group of the amino acid valine. ppm: Parts per million.
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For lung cancer, metabolic phenotyping by means of 1H-NMR can further be useful in preceding 

low-dose computed tomography (LDCT) scanning as a tool to deliver additional and complemen-

tary risk factors for a better selection of high-risk individuals. Currently, selection of those indi-
viduals is primarily based on age and smoking status/history [51]. As an outcome of the National 
Lung Screening Trial, it is stated that mortality is significantly reduced when screening with LDCT 
occurs [52]. Although sensitivity levels of LDCT screening are high and the number of diagnoses in 
early stadia increases, the positive predictive value of LDCT is currently still low [53]. Other draw-

backs of LDCT screening are the high rate of false positive results, the high risk of overdiagnosis 
and consequently additional radiation exposure due to avoidable diagnostic tests [54]. In order to 

meet with the raising interest in improving the accuracy of risk prediction, promising clinically rel-
evant diagnostic biomarkers which can add predictive value to existing models are indispensable 
[55, 56]. Therefore, a noninvasive blood-based screening test in complement with LDCT would 
be a valuable tool to reduce the number of individuals undergoing unnecessary and sometimes 
harmful follow-up treatments. Likewise, in a next phase, identification of prognostic biomarkers 
could assist in the tracing of early-stage lung cancer patients who would most likely benefit from 
current therapies, for example, surgery with curative intent or adjuvant chemotherapy [57].

Next to the discovery of diagnostic and prognostic biomarkers, metabolic profiling is being 
extensively examined for its use in prediction of individual therapy response [58–61]. 

Personalized treatment will contribute to a reduction of adverse reactions by (i) prediction of 
the patient’s response and (ii) administration of the most efficient drug dose. Moreover, lon-

gitudinal monitoring of patients allows to track post-interventional outcome or deviations in 
response and therefore can assist in paving the way toward long-term personalized health [49].

6. Conclusion

Analysis of metabolic changes in blood plasma by 1H-NMR spectroscopy allows to signifi-

cantly discriminate between lung cancer patients and healthy controls. Additionally, meta-

bolic phenotyping supports detection of lung cancer in all stages and enables differentiation 
between different cancer types such as breast and lung cancers. This indicates that a metabolo-

mics approach can actively contribute to lung cancer diagnosis, even in early stages of tumor 
development. For daily clinical practice, where the main goal is to correctly classify patients, a 
medium-field (400–600 MHz) NMR spectrometer can provide sufficient discriminative power 
to perform clinical metabolomics. For research purposes, on the other hand, where disease-

related disturbed pathways deserve a more extensive analysis, high-field NMR (e.g., 900 MHz) 
spectra are preferred. The ability of high-field NMR to observe a larger number of metabolites 
that are represented by a nonoverlapping signal, permits a deeper look into the underlying 
affected metabolic pathways. We show that increased glucose levels are observed while lac-

tate levels are decreased in blood plasma of lung cancer patients. These aberrant metabolite 
concentrations indicate an increased gluconeogenesis as counteraction of the body to the 
Warburg effect in the cancer cells. Moreover, the fact that cancer cells manage an enhanced 
membrane synthesis can be confirmed by the lowered plasma levels of phospholipids.

Encouraged by all these promising results, the authors strongly believe that 1H-NMR-based 

metabolic fingerprinting will become widely clinically implemented by serving as (i) an 
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additional screening tool for lung cancer, (ii) a procedure to define complementary risk fac-

tors for current risk models toward an improved selection of lung cancer patients eligible for 
LDCT, and (iii) an innovative method to better characterize lung cancer patients in order to 
provide them with the best treatment strategies available.
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