5,066 research outputs found
Thermal stability and nitrogen redistribution in the〈Si〉/Ti/W–N/Al metallization scheme
Backscattering spectrometry, Auger electron spectroscopy, and x‐ray diffraction have been used to monitor the thin‐film reactions and nitrogen redistribution in the 〈Si〉/Ti/W–N/Al metallization system. It is found that nitrogen in the W–N layer redistributes into Ti after annealing at temperatures above 500 °C. As a consequence of this redistribution of nitrogen, a significant amount of interdiffusion between Al and the underlayers is observed after annealing at 550 °C. This result contrasts markedly with that for the 〈Si〉/W–N/Al system, where no interdiffusion can be detected after the same thermal treatment. We attribute this redistribution of nitrogen to the stronger affinity of Ti for nitrogen than W. If the Ti layer is replaced by a sputtered TiSi_(2.3) film, no redistribution of nitrogen or reactions can be detected after annealing at 550 °C for 30 min
Frequency-Dependent Attenuation Analysis of Ground-Penetrating Radar Data
In the early 1990s, it was established empirically that, in many materials, ground-penetrating radar (GPR) attenuation is approximately linear with frequency over the bandwidth of a typical pulse. Further, a frequency-independent Q* parameter characterizes the slope of the band-limited attenuation versus frequency curve. Here, I derive the band-limited Q* function from a first-order Taylor expansion of the attenuation coefficient. This approach provides a basis for computing Q* from any arbitrary dielectric permittivity model. For Cole-Cole relaxation, I find good correlation between the first-order Q* approximation and Q* computed from linear fits to the attenuation coefficient curve over two-octave bands. The correlation holds over the primary relaxation frequency. For some materials, this relaxation occurs between 10 and 200 MHz, a typical frequency range for many GPR applications. Frequency-dependent losses caused by scattering and by the commonly overlooked problem of frequency-dependent reflection make it difficult or impossible to measure Q* from reflection data without a priori understanding of the materials. Despite these complications, frequency-dependent attenuation analysis of reflection data can provide valuable subsurface information. At two field sites, I find well-defined frequency-dependent attenuation anomalies associated with nonaqueous-phase liquid contaminants
New free-air and Bouguer gravity fields of Taiwan from multiple platforms and sensors
We construct 1' × 1' grids of free-air and Bouguer gravity anomalies around Taiwan with well-defined error estimates for quality assessment. The grids are compiled from land, airborne and shipborne gravity measurements, augmented with altimeter gravity at sea. Three sets of relative land gravity measurements are network-adjusted and outlier-edited, yielding accuracies of 0.03–0.09 mGal. Three airborne gravity sets are collected at altitudes 5156 and 1620 m with accuracies of 2.57–2.79 mGal. Seven offshore shipborne gravity campaigns around Taiwan and its offshore islands yield shallow-water gravity values with 0.88–2.35 mGal accuracies. All data points are registered with GPS-derived geodetic coordinates at cm–dm accuracies, allowing for precise gravity reductions and computing gravity disturbances. The various datasets are combined by the band-limited least-squares collocation in a one-step procedure. In the eastern mountainous (or offshore) region, Bouguer anomalies and density contrasts without considering the oceanic (or land) topographic contribution are underestimated. The new grids show unprecedented tectonic features that can revise earlier results, and can be used in a broad range of applications
Ground-Penetrating Radar Theory and Application of Thin-Bed Offset-Dependent Reflectivity
Offset-dependent reflectivity or amplitude-variationwith- offset (AVO) analysis of ground-penetrating radar (GPR) data may improve the resolution of subsurface dielectric permittivity estimates. A horizontally stratified medium has a limiting layer thickness below which thin-bed AVO analysis is necessary. For a typical GPR signal, this limit is approximately 0.75 of the characteristic wavelength of the signal. Our approach to modeling the GPR thin-bed response is a broadband, frequency-dependent computation that utilizes an analytical solution to the three-interface reflectivity and is easy to implement for either transverse electric (TE) or transverse magnetic (TM) polarizations. The AVO curves for TE and TM modes differ significantly. In some cases, constraining the interpretation using both TE and TM data is critical. In two field examples taken from contaminated-site characterization data, we find quantitative thin-bed modeling agrees with the GPR field data and available characterization data
Model Checking Classes of Metric LTL Properties of Object-Oriented Real-Time Maude Specifications
This paper presents a transformational approach for model checking two
important classes of metric temporal logic (MTL) properties, namely, bounded
response and minimum separation, for nonhierarchical object-oriented Real-Time
Maude specifications. We prove the correctness of our model checking
algorithms, which terminate under reasonable non-Zeno-ness assumptions when the
reachable state space is finite. These new model checking features have been
integrated into Real-Time Maude, and are used to analyze a network of medical
devices and a 4-way traffic intersection system.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
Mosquitoes Collected In South And East Kalimantan
Pengumpulan nyamuk dalam waktu singkat di sembilan tempat di Kalimantan Timur dan Selatan menghasilkan 57 species dari 11 genera. Species yang terbanyak dikumpulkan ialah dari genus Culex 27 percent Mansonia 16 percent. Anopheles 16 percent, Aedes 12 percent, Armigeres 7 percent, Mimomia 7 percent, Uranotaenia 7 percent, Hodgesia. Tripteroides, Heizmania dan Culiseta masing-masing 2 percent
Transport on Directed Percolation Clusters
We study random lattice networks consisting of resistor like and diode like
bonds. For investigating the transport properties of these random resistor
diode networks we introduce a field theoretic Hamiltonian amenable to
renormalization group analysis. We focus on the average two-port resistance at
the transition from the nonpercolating to the directed percolating phase and
calculate the corresponding resistance exponent to two-loop order.
Moreover, we determine the backbone dimension of directed percolation
clusters to two-loop order. We obtain a scaling relation for that is in
agreement with well known scaling arguments.Comment: 4 page
Multifractal properties of resistor diode percolation
Focusing on multifractal properties we investigate electric transport on
random resistor diode networks at the phase transition between the
non-percolating and the directed percolating phase. Building on first
principles such as symmetries and relevance we derive a field theoretic
Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of
the current distribution that are governed by a family of critical exponents
. We calculate the family to two-loop order in a
diagrammatic perturbation calculation augmented by renormalization group
methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.
- …