8 research outputs found

    Development of new composites made of waste materials for wood pallet element

    No full text
    The recycling of waste products and its further use for new products is of the utmost importance nowadays. The quantities of waste product originating from industries involving plastics, paper, wood, textile and metal foils, such as the related automotive, paper, wood and food industries, represent extremely large numbers, strongly indicating the need for efficient waste management. On the other side of things, companies are always looking for ways to lower material costs. The combination of different waste materials can be used for production of new composite materials. This paper will present a brief overview of existing possibilities in the development of new composites completely made of waste materials, as well as further research directions. A preliminary study of material combinations that can provide a composite aimed at load bearing applications is given, for the purpose of replacing elements such as wood blocks in transport pallets. Several combinations of waste material from different industries were studied in a composite structure: paper, cardboard boxes, tetra-pak containers, expanded polystyrene (styrofoam), polyurethane (PU) foam, artificial leather, textile, wood chips and dust. Preliminary compressive tests were performed. The results indicated unsuitable combinations, but also some that provided a stable compact composite which endured high compressive loads. An important result is that such a composite can be made without adding any adhesives. Waste materials from different industries can be efficiently used for new composites, and further study of this is clearly needed

    Industry 4.0 and the circular economy: a proposed research agenda and original roadmap for sustainable operations

    No full text
    This work makes a case for the integration of the increasingly popular and largely separate topics of Industry 4.0 and the circular economy (CE). The paper extends the state-of-the-art literature by proposing a pioneering roadmap to enhance the application of CE principles in organisations by means of Industry 4.0 approaches. Advanced and digital manufacturing technologies are able to unlock the circularity of resources within supply chains; however, the connection between CE and Industry 4.0 has not so far been explored. This article therefore contributes to the literature by unveiling how different Industry 4.0 technologies could underpin CE strategies, and to organisations by addressing those technologies as a basis for sustainable operations management decision-making. The main results of this work are: (a) a discussion on the mutually beneficial relationship between Industry 4.0 and the CE; (b) an in-depth understanding of the potential contributions of smart production technologies to the ReSOLVE model of CE business models; (c) a research agenda for future studies on the integration between Industry 4.0 and CE principles based on the most relevant management theories

    Overview of ASDEX Upgrade results

    No full text
    The experimental ASDEX Upgrade results of the Divertor I phase are reviewed with emphasis on H-mode physics, power handling, plasma edge and divertor physics, operational limits (beta and density), disruption behaviour and testing of tungsten as a target plate material. All these investigations are focused on the preparation of the ITER physics database. The change to the new divertor is briefly outlined

    Overview of ASDEX Upgrade results

    No full text
    corecore