407 research outputs found

    Forensic profiling of smokeless powders (SLPs) by gas chromatography–mass spectrometry (GC-MS): a systematic investigation into injector conditions and their effect on the characterisation of samples

    Get PDF
    Smokeless powders (SLPs) are composed of a combination of thermolabile and non-thermolabile compounds. When analysed by GC-MS, injection conditions may therefore play a fundamental role on the characterisation of forensic samples. However, no systematic investigations have ever been carried out. This casts doubt on the optimal conditions that should be adopted in advanced profiling applications (e.g. class attribution and source association), especially when a traditional split/splitless (S/SL) injector is used. Herein, a study is reported that specifically focused on the evaluation of the liner type (L type) and inlet temperature (T inj). Results showed that both could affect the exhaustiveness and repeatability of the observed chemical profiles, with L type being particularly sensitive despite typically not being clarified in published works. Perhaps as expected, degradation effects were observed for the most thermolabile compounds (e.g. nitroglycerin) at conditions maximising the heat transfer rates (L type = packed and T inj ≄ 200 °C). However, these did not seem to be as influential as, perhaps, suggested in previous studies. Indeed, the harshest injection conditions in terms of heat transfer rate (L type = packed and T inj = 260 °C) were found to lead to better performances (including better overall %RSDs and LODs) compared to the mildest ones. This suggested that implementing conditions minimising heat-induced breakdowns during injection was not necessarily a good strategy for comparison purposes. The reported findings represent a concrete step forward in the field, providing a robust body of data for the development of the next generation of SLP profiling methods. Graphical abstract: (Figure presented.).</p

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    Get PDF
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×1034^{34} cm−2^{-2}s−1^{-1}. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→Ό+Ό−Ό+Ό− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→Ό+Ό− decay as normalization, the branching fraction B(η→Ό+Ό−Ό+Ό−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2ÎŒ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H → ZZ → 4ℓ (ℓ = e, ÎŒ) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The measured inclusive fiducial cross section is 2.73 ± 0.26 fb, in agreement with the standard model expectation of 2.86 ± 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model

    Observation of four top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for Scalar Leptoquarks Produced via τ-Lepton-Quark Scattering in pppp Collisions at s=13TeV\sqrt{s}=13 TeV

    Get PDF
    The first search for scalar leptoquarks produced in τ-lepton–quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138  fb−1^{−1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength

    Search for a high-mass dimuon resonance produced in association with b quark jets at s \sqrt{s} = 13 TeV

    Get PDF
    • 

    corecore