4 research outputs found

    Time-resolved mass spectrometry

    No full text
    Many processes in living cells involve interaction and cooperation of multiple proteins to fulfill a specific function. To understand biological processes in their full complexity, it is not sufficient to only identify the molecules being involved but also to understand the kinetic aspects of a reaction. Mass spectrometry (MS) is a very powerful tool which allows to precisely identify the molecules of a reaction. Usually this is done with tandem-MS experiments for purpose of de-novo peptide sequencing. However, since this involves protein digestion, a statement of the in-vivo constitution of non-covalently bound protein complexes is not possible. In order to detect an intact protein complex it is necessary to analyze the biological system softly and in a near-native environment with native MS. Native MS allows the non-destructive analysis of these non-covalent protein complexes as well as to detect their components. However, up to now native MS does not offer a possibility to resolve the timing of the constitution of protein complexes on a fast time-scale. Therefore, the progress of reactions on fast time-scales is invisible. However, a method which delivers both types of information - identification of the components of a protein complex, as well as time-resolving their interaction - would be of high interest. A suitable ionization technique for native MS is laser-induced liquid-bead ion desorption (LILBID). LILBID employs well-defined droplets which are irradiated by IR laser pulses to generate gas phase ions. The not-continuous, repetitive nature of ion generation offers itself to the development of a time-resolved (TR) native MS system which is able to investigate protein complexes on a fast time scale. The LILBID-droplets can serve as reaction vessels if they are levitated in an electrodynamic Paul-trap. This new setup would allow sample manipulation and MS analysis on precise and fast reaction time-scales. The first part of this dissertation presents the construction and characterization of a setup for TR-LILBID-MS. An example for a complex biological system is the self-assembly of beta-amyloid (Aβ). This small peptide is the major component in plaques related to Alzheimer’s disease. Clinically relevant is especially the 42 amino acid peptide Aβ42 which aggregates from monomers to oligomers through to fibrils. The oligomers are the neurotoxic species in this process and thus of high interest. Nevertheless, standard analytical techniques are unable to detect those oligomers which makes MS an optimal tool to study the oligomerization process of Aβ with the focus on disease relevant oligomers. TR-LILBID-MS allows to follow the oligomerization of Aβ enabling to study molecules which influence this kinetic. Combining MS with ion-mobility spectrometry adds an additional dimension - the collision cross section - to the mass-to-charge ratio obtained from MS. Therewith structural alterations induced by ligands can be correlated to differences in the aggregation kinetic. This allows to draw a picture of the aggregation process of Aβ for the development of disease-relevant small oligomers on a molecular level

    Visualizing Specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR

    No full text
    International audienceMembrane proteins often form oligomeric complexes within the lipid bilayer, but factors controlling their assembly are hard to predict and experimentally difficult to determine. An understanding of protein–protein interactions within the lipid bilayer is however required in order to elucidate the role of oligomerization for their functional mechanism and stabilization. Here, we demonstrate for the pentameric, heptahelical membrane protein green proteorhodopsin that solid-state NMR could identify specific interactions at the protomer interfaces, if the sensitivity is enhanced by dynamic nuclear polarization. For this purpose, differently labeled protomers have been assembled into the full pentamer complex embedded within the lipid bilayer. We show for this proof of concept that one specific salt bridge determines the formation of pentamers or hexamers. Data are supported by laser-induced liquid bead ion desorption mass spectrometry and by blue native polyacrylamide gel electrophoresis analysis. The presented approach is universally applicable and opens the door toward analyzing membrane protein interactions within homo-oligomers directly in the membrane

    Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer's disease related oligomers

    No full text
    The formation of oligomers of the amyloid-β peptide plays a key role in the onset of Alzheimer's disease. We describe herein the investigation of disease-relevant small amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing functionally relevant structural attributes. In particular, we can show that amyloid-β oligomers develop in two distinct arrangements leading to either neurotoxic oligomers and fibrils or non-toxic amorphous aggregates. Comprehending the key-attributes responsible for those pathways on a molecular level is a pre-requisite to specifically target the peptide's tertiary structure with the aim to promote the emergence of non-toxic aggregates. Here, we show for two fibril inhibiting ligands, an ionic molecular tweezer and a hydrophobic peptide that despite their different interaction mechanisms, the suppression of the fibril pathway can be deduced from the disappearance of the corresponding structure of the first amyloid-β oligomers

    Peptidomimetics That Inhibit and Partially Reverse the Aggregation of Aβ<sub>1–42</sub>

    No full text
    The peptide sequence KLVFF resembles the hydrophobic core of the Aβ peptide known to form amyloid plaques in Alzheimer’s disease. Starting from its retro-inverso peptide, we have synthesized three generations of peptidomimetics. Step by step natural amino acids have been replaced by aromatic building blocks accessible from the Pd-catalyzed Catellani reaction. The final compound <b>18</b> is stable against proteolytic decay and largely prevents the aggregation of Aβ<sub>1–42</sub> over extended periods of time. The activity of the new inhibitors was tested first by fluorescence correlation spectroscopy. For closer examination of compound <b>18</b>, additional techniques were also applied: laser-induced liquid bead ion desorption mass spectrometry, confocal laser scanning microscopy, thioflavin T fluorescence, and gel electrophoresis. Compound <b>18</b> not only retards the aggregation of chemically synthesized Aβ but also can partially dissolve the oligomeric structures. Thioflavin binding mature fibrils, however, seem to resist the inhibitor
    corecore