24 research outputs found
Oral Pre-Exposure Prophylaxis by Anti-Retrovirals Raltegravir and Maraviroc Protects against HIV-1 Vaginal Transmission in a Humanized Mouse Model
Sexual HIV-1 transmission by vaginal route is the most predominant mode of viral transmission, resulting in millions of new infections every year. In the absence of an effective vaccine, there is an urgent need to develop other alternative methods of pre-exposure prophylaxis (PrEP). Many novel drugs that are currently approved for clinical use also show great potential to prevent viral sexual transmission when administered systemically. A small animal model that permits rapid preclinical evaluation of potential candidates for their systemic PrEP efficacy will greatly enhance progress in this area of investigation. We have previously shown that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and displays CD4 T cell loss typical to that seen in the human. Thus far systemic PrEP studies have been primarily limited to RT inhibitors exemplified by tenofovir and emtricitabine. In these proof-of-concept studies we evaluated two new classes of clinically approved drugs with different modes of action namely, an integrase inhibitor raltegravir and a CCR5 inhibitor maraviroc as potential systemically administered chemo-prophylactics. Our results showed that oral administration of either of these drugs fully protects against vaginal HIV-1 challenge in the RAG-hu mouse model. Based on these results both these drugs show great promise for further development as orally administered PrEPs
In Vitro Downregulation of Matrix Metalloproteinase-9 in Rat Glial Cells by CCR5 Antagonist Maraviroc: Therapeutic Implication for HIV Brain Infection
BACKGROUND: Matrix metalloproteinases (MMPs) released by glial cells are important mediators of neuroinflammation and neurologic damage in HIV infection. The use of antiretroviral drugs able to combat the detrimental effect of chronic inflammation and target the exaggerated MMP activity might represent an attractive therapeutic challenge. Recent studies suggest that CCR5 antagonist maraviroc (MVC) exerts immunomodulant and anti-inflammatory activity beyond its anti-HIV properties. We investigated the in vitro effect of MVC on the activity of MMPs in astrocyte and microglia cultures.
METHODOLOGY/PRINCIPAL FINDINGS: Primary cultures of rat astrocytes and microglia were activated by exposure to phorbol myristate acetate (PMA) or lypopolysaccharide (LPS) and treated in vitro with MVC. Culture supernatants were subjected to gelatin zymography and quantitative determination of MMP-9 and MMP-2 was done by computerized scanning densitometry. MMP-9 levels were significantly elevated in culture supernatants from both LPS- and PMA-activated astrocytes and microglia in comparison to controls. The treatment with MVC significantly inhibited in a dose-dependent manner the levels and expression of MMP-9 in PMA-activated astrocytes (p<0,05) and, to a lesser extent, in PMA-activated microglia. By contrast, levels of MMP-2 did not significantly change, although a tendency to decrease was seen in PMA-activated astrocytes after treatment with MVC. The inhibition of levels and expression of MMP-9 in PMA-activated glial cells did not depend on cytotoxic effects of MVC. No inhibition of MMP-9 and MMP-2 were found in both LPS-activated astrocytes and microglia.
CONCLUSIONS: The present in vitro study suggests that CCR5 antagonist compounds, through their ability to inhibit MMP-9 expression and levels, might have a great potential for the treatment of HIV-associated neurologic damage
Body Fluid Cytokine Levels in Mild Cognitive Impairment and Alzheimer’s Disease: a Comparative Overview
This article gives a comprehensive overview of cytokine and other inflammation associated protein levels in plasma, serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). We reviewed 118 research articles published between 1989 and 2013 to compare the reported levels of 66 cytokines and other proteins related to regulation and signaling in inflammation in the blood or CSF obtained from MCI and AD patients. Several cytokines are evidently regulated in (neuro-) inflammatory processes associated with neurodegenerative disorders. Others do not display changes in the blood or CSF during disease progression. However, many reports on cytokine levels in MCI or AD are controversial or inconclusive, particularly those which provide data on frequently investigated cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). The levels of several cytokines are possible indicators of neuroinflammation in AD. Some of them might increase steadily during disease progression or temporarily at the time of MCI to AD conversion. Furthermore, elevated body fluid cytokine levels may correlate with an increased risk of conversion from MCI to AD. Yet, research results are conflicting. To overcome interindividual variances and to obtain a more definite description of cytokine regulation and function in neurodegeneration, a high degree of methodical standardization and patients collective characterization, together with longitudinal sampling over years is essential
HIV interactions with monocytes and dendritic cells: viral latency and reservoirs
HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis
Willingness to Participate in HIV Therapeutic Vaccine Trials among HIV-Infected Patients on ART in China
BACKGROUND: More and more HIV therapeutic vaccines will enter clinical trials; however, little is known about the willingness to participate (WTP) in HIV therapeutic vaccine trials among HIV-positive individuals. OBJECTIVE: To investigate the WTP in HIV therapeutic vaccine trials among Chinese HIV-infected patients. METHODS: We conducted a cross-sectional survey on HIV-positive inpatients and outpatients at Shanghai Public Health Center. A total of 447 participants were recruited into this study. Following an introduction with general information on HIV therapeutic vaccine and its potential effectiveness and side effects, each participant completed a questionnaire in a self-administered form. The questionnaires covered demographics, high-risk behaviors, clinical characteristics and willingness to participate in HIV therapeutic vaccine trial. RESULTS: The overall willingness to participate in HIV therapeutic vaccine trials was 91.5%. Interestingly, multivariate logistic regression analyses demonstrated that the willingness was higher for those sexually infected by HIV (odds ratio [OR]: 4.36; 95% confidence interval [CI]: 1.53-12.41), diagnosed as HIV-1 infection for greater than 5 years (OR: 7.12, 95% CI: 1.83-27.76), and with the presence of infectious complications (OR: 2.75; 95% CI: 1.02-7.45). The primary reason for participation was to delay or reduce antiretroviral treatment (ART) and to avoid ART side effects (76.6%), and then followed by delaying disease progression (74.9%), increasing immune response to suppress opportunistic infections (57.7%) and preventing the development of drug resistance (37.1%). Reasons for unwillingness to participate mainly included concern for safety (37.0%), lack of knowledge on therapeutic vaccine (33.3%), and satisfaction with ART effectiveness (22.2%). CONCLUSIONS: The WTP in HIV therapeutic vaccine trials was high among HIV-infected Chinese patients. HIV+ subjects who acquired infection through sexual contact and who were diagnosed for more than 5 years may represent a good candidate population for enrollment in therapeutic vaccine trials
Cellular Responses and Tissue Depots for Nanoformulated Antiretroviral Therapy
Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV). Local inflammatory responses heralded drug distribution to peritoneal cell populations, regional lymph nodes, spleen and liver. This proceeded for three days in male Balb/c mice. NanoATV-induced changes in myeloid populations were assessed by fluorescence-activated cell sorting (FACS) with CD45, CD3, CD11b, F4/80, and GR-1 antibodies. The localization of nanoATV within leukocyte cell subsets was determined by confocal microscopy. Combined FACS and ultra-performance liquid chromatography tandem mass-spectrometry assays determined nanoATV carriages by cell-based vehicles. A robust granulocyte, but not peritoneal macrophage nanoATV response paralleled zymosan A treatment. ATV levels were highest at sites of injection in peritoneal or muscle macrophages, dependent on the injection site. The spleen and liver served as nanoATV tissue depots while drug levels in lymph nodes were higher than those recorded in plasma. Dual polymer and cell labeling demonstrated a nearly exclusive drug reservoir in macrophages within the liver and spleen. Overall, nanoART induces innate immune responses coincident with rapid tissue macrophage distribution. Taken together, these works provide avenues for therapeutic development designed towards chemical eradication of human immunodeficiency viral infection
