169 research outputs found

    Lifting of Ir{100} reconstruction by CO adsorption: An ab initio study

    Full text link
    The adsorption of CO on unreconstructed and reconstructed Ir{100} has been studied, using a combination of density functional theory and thermodynamics, to determine the relative stability of the two phases as a function of CO coverage, temperature and pressure. We obtain good agreement with experimentaldata. At zero temperature, the (1X5) reconstruction becomes less stable than the unreconstructed (1X1) surface when the CO coverage exceeds a critical value of 0.09 ML. The interaction between CO molecules is found to be repulsive on the reconstructed surface, but attractive on the unreconstructed, explaining the experimental observation of high CO coverage on growing (1X1) islands. At all temperatures and pressures, we find only two possible stable states: 0.05 ML CO c(2X2) overlayer on the (1X1) substrate, and the clean (1×\times5) reconstructed surface.Comment: 31 page

    Bistability in a simple fluid network due to viscosity contrast

    Full text link
    We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity--sucrose solution and water. Possible applications include bloodflow, microfluidics, and other network flows governed by similar principles

    The CRC Handbook of Chemistry and Physics: A mountain, a cathedral, a battleship, or 
 an iceberg? An interview with David R. Lide, Editor-in-Chief

    Get PDF
    Svetla Baykoucheva, editor of the Chemical Information Bulletin, interviews David R. Lide, Editor-in-Chief of The CRC Handbook of Chemistry and Physics, about the past and present of this major resource for chemical information and his role, in the course of 20 years, in leading it

    Two-electron atoms, ions and molecules

    Full text link
    The quantum mechanics of two-electron systems is reviewed, starting with the ground state of the helium atom and helium-like ions, with central charge Z≄2Z\ge 2. For Z=1, demonstrating the stability of the negative hydrogen ion, H−^-, cannot be achieved using a mere product of individual electron wave functions, and requires instead an explicit account for the anticorrelation among the two electrons. The wave function proposed by Chandrasekhar is revisited, where the permutation symmetry is first broken and then restored by a counter-term. More delicate problems can be studied using the same strategy: the stability of hydrogen-like ions (M+,m−,m−)(M^+,m^-,m^-) for any value of the proton-to-electron mass ratio M/mM/m; the energy of the lowest spin-triplet state of helium and helium-like ions; the stability of the doubly-excited hydrogen ion with unnatural parity. The positronium molecule (e+,e+,e−,e−)(e^+,e^+,e^-,e^-), which has been predicted years ago and discovered recently, can also be shown to be stable against spontaneous dissociation, though the calculation is a little more involved. Emphasis is put on symmetry breaking which can either spoil or improve the stability of systems.Comment: 16 pages, 2 figure

    CRC handbook of thermophysical and thermochemical data

    Get PDF

    The strong influence of substrate conductivity on droplet evaporation

    Get PDF
    We report the results of physical experiments that demonstrate the strong influence of the thermal conductivity of the substrate on the evaporation of a pinned droplet. We show that this behaviour can be captured by a mathematical model including the variation of the saturation concentration with temperature, and hence coupling the problems for the vapour concentration in the atmosphere and the temperature in the liquid and the substrate. Furthermore, we show that including two ad hoc improvements to the model, namely a Newton's law of cooling on the unwetted surface of the substrate and the buoyancy of water vapour in the atmosphere, give excellent quantitative agreement for all of the combinations of liquid and substrate considered

    The TREC2001 video track: information retrieval on digital video information

    Get PDF
    The development of techniques to support content-based access to archives of digital video information has recently started to receive much attention from the research community. During 2001, the annual TREC activity, which has been benchmarking the performance of information retrieval techniques on a range of media for 10 years, included a ”track“ or activity which allowed investigation into approaches to support searching through a video library. This paper is not intended to provide a comprehensive picture of the different approaches taken by the TREC2001 video track participants but instead we give an overview of the TREC video search task and a thumbnail sketch of the approaches taken by different groups. The reason for writing this paper is to highlight the message from the TREC video track that there are now a variety of approaches available for searching and browsing through digital video archives, that these approaches do work, are scalable to larger archives and can yield useful retrieval performance for users. This has important implications in making digital libraries of video information attainable

    Pattern formation on ion-irradiated Si surface at energies where sputtering is negligible

    Get PDF
    The effect of low energy irradiation, where the sputtering is imperceptible, has not been deeply studied in the pattern formation. In this work, we want to address this question by analyzing the nanoscale topography formation on a Si surface, which is irradiated at room temperature by Arthorn ions near the displacement threshold energy, for incidence angles ranging from 0 degrees to 85 degrees. The transition from the smooth to ripple patterned surface, i.e., the stability/instability bifurcation angle is observed at 55 degrees, whereas the ripples with their wave-vector is parallel to the ion beam projection in the angular window of 60 degrees-70 degrees, and with 90 degrees rotation with respect to the ion beam projection at the grazing angles of incidence. A similar irradiation setup has been simulated by means of molecular dynamics, which made it possible, first, to quantify the effect of the irradiation in terms of erosion and redistribution using sequential irradiation and, second, to evaluate the ripple wavelength using the crater function formalism. The ripple formation results can be solely attributed to the mass redistribution based mechanism, as erosion due to ion sputtering near or above the threshold energy is practically negligible. Published by AIP Publishing.Peer reviewe

    Nitrogen doping of metallic single-walled carbon nanotubes: n-type conduction and dipole scattering

    Full text link
    The charge transport properties of individual, metallic nitrogen doped, single-walled carbon nanotubes are investigated. It is demonstrated that n-type conduction can be achieved by nitrogen doping. Evidence was obtained by appealing to electric-field effect measurements at ambient condition. The observed temperature dependencies of the zero-bias conductance indicate a disordered electron system with electric-dipole scattering, caused mainly by the pyridine-type nitrogen atoms in the honeycomb lattice. These results illustrate the possibility of creating all-metallic molecular devices, in which the charge carrier type can be controlled.Comment: 16 page
    • 

    corecore