2,340 research outputs found
Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: Need for chemohydrodynamic instability at the nanoscale
We explore nanoscale hydrodynamical effects on synthesis and self-assembly of
cadmium sulfide nanotubes oriented along one direction. These nanotubes are
synthesized by horizontal capillary flow of two different chemical reagents
from opposite directions through nanochannels of porous anodic alumina which
are used primarily as nanoreactors. We show that uneven flow of different
chemical precursors is responsible for directionally asymmetric growth of these
nanotubes. On the basis of structural observations using scanning electron
microscopy, we argue that chemohydrodynamic convective interfacial instability
of multicomponent liquid-liquid reactive interface is necessary for sustained
nucleation of these CdS nanotubes at the edges of these porous nanochannels
over several hours. However, our estimates clearly suggest that classical
hydrodynamics cannot account for the occurrence of such instabilities at these
small length scales. Therefore, we present a case which necessitates further
investigation and understanding of chemohydrodynamic fluid flow through
nanoconfined channels in order to explain the occurrence of such interfacial
instabilities at nanometer length scales.Comment: 26 pages, 6 figures; http://www.iiserpune.ac.in/researchhighlight
Ultimate performance of polymer:fullerene bulk heterojunction tandem solar cells
We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum power efficiency of 11.7% for single cells has been achieved as a reference. For tandem structures with a ZnO/poly(3,4-ethylenedioxythiophene)/ poly(styrenesulphonic acid) middle electrode an ultimate efficiency of 14.1% has been calculated. In the optimum configuration the subcell with the narrowest band gap is placed closest to the incoming light. Consequently, tandem structures are expected to enhance the performance of optimized single cells by about 20%. © 2011 American Institute of Physics
Focused Crossed Andreev Reflection
We consider non-local transport in a system with one superconducting and two
normal metal terminals. Electron focusing by weak perpendicular magnetic fields
is shown to tune the ratio between crossed Andreev reflection (CAR) and
electron transfer (ET) in the non-local current response. Additionally,
electron focusing facilitates non-local signals between normal metal contacts
where the separation is as large as the mean free path rather than being
limited by the coherence length of the superconductor. CAR and ET can be
selectively enhanced by modulating the magnetic field
Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets
We study a liquid jet that breaks up into drops in an external co-flowing
liquid inside a confining microfluidic geometry. The jet breakup can occur
right after the nozzle in a phenomenon named dripping or through the generation
of a liquid jet that breaks up a long distance from the nozzle, which is called
jetting. Traditionally, these two regimes have been considered to reflect the
existence of two kinds of spatiotemporal instabilities of a fluid jet, the
dripping regime corresponding to an absolutely unstable jet and the jetting
regime to a convectively unstable jet. Here, we present quantitative
measurements of the dripping and jetting regimes, both in an unforced and a
forced state, and compare these measurements with recent theoretical studies of
spatiotemporal instability of a confined liquid jet in a co-flowing liquid. In
the unforced state, the frequency of oscillation and breakup of the liquid jet
is measured and compared to the theoretical predictions. The dominant frequency
of the jet oscillations as a function of the inner flow rate agrees
qualitatively with the theoretical predictions in the jetting regime but not in
the dripping regime. In the forced state, achieved with periodic laser heating,
the dripping regime is found to be insensitive to the perturbation and the
frequency of drop formation remains unaltered. The jetting regime, on the
contrary, amplifies the externally imposed frequency, which translates in the
formation of drops at the frequency imposed by the external forcing. In
conclusion, the dripping and jetting regimes are found to exhibit the main
features of absolutely and convectively unstable flows respectively, but the
frequency selection in the dripping regime is not ruled by the absolute
frequency predicted by the stability analysis.Comment: 10 pages, 12 figures, to appear in Physics of Fluid
Efficient Algorithm for Asymptotics-Based Configuration-Interaction Methods and Electronic Structure of Transition Metal Atoms
Asymptotics-based configuration-interaction (CI) methods [G. Friesecke and B.
D. Goddard, Multiscale Model. Simul. 7, 1876 (2009)] are a class of CI methods
for atoms which reproduce, at fixed finite subspace dimension, the exact
Schr\"odinger eigenstates in the limit of fixed electron number and large
nuclear charge. Here we develop, implement, and apply to 3d transition metal
atoms an efficient and accurate algorithm for asymptotics-based CI.
Efficiency gains come from exact (symbolic) decomposition of the CI space
into irreducible symmetry subspaces at essentially linear computational cost in
the number of radial subshells with fixed angular momentum, use of reduced
density matrices in order to avoid having to store wavefunctions, and use of
Slater-type orbitals (STO's). The required Coulomb integrals for STO's are
evaluated in closed form, with the help of Hankel matrices, Fourier analysis,
and residue calculus.
Applications to 3d transition metal atoms are in good agreement with
experimental data. In particular we reproduce the anomalous magnetic moment and
orbital filling of Chromium in the otherwise regular series Ca, Sc, Ti, V, Cr.Comment: 14 pages, 1 figur
Computational Design of Chemical Nanosensors: Metal Doped Carbon Nanotubes
We use computational screening to systematically investigate the use of
transition metal doped carbon nanotubes for chemical gas sensing. For a set of
relevant target molecules (CO, NH3, H2S) and the main components of air (N2,
O2, H2O), we calculate the binding energy and change in conductance upon
adsorption on a metal atom occupying a vacancy of a (6,6) carbon nanotube.
Based on these descriptors, we identify the most promising dopant candidates
for detection of a given target molecule. From the fractional coverage of the
metal sites in thermal equilibrium with air, we estimate the change in the
nanotube resistance per doping site as a function of the target molecule
concentration assuming charge transport in the diffusive regime. Our analysis
points to Ni-doped nanotubes as candidates for CO sensors working under typical
atmospheric conditions
Emulsification in binary liquids containing colloidal particles: a structure-factor analysis
We present a quantitative confocal-microscopy study of the transient and
final microstructure of particle-stabilised emulsions formed via demixing in a
binary liquid. To this end, we have developed an image-analysis method that
relies on structure factors obtained from discrete Fourier transforms of
individual frames in confocal image sequences. Radially averaging the squared
modulus of these Fourier transforms before peak fitting allows extraction of
dominant length scales over the entire temperature range of the quench. Our
procedure even yields information just after droplet nucleation, when the
(fluorescence) contrast between the two separating phases is scarcely
discernable in the images. We find that our emulsions are stabilised on
experimental time scales by interfacial particles and that they are likely to
have bimodal droplet-size distributions. We attribute the latter to coalescence
together with creaming being the main coarsening mechanism during the late
stages of emulsification and we support this claim with (direct)
confocal-microscopy observations. In addition, our results imply that the
observed droplets emerge from particle-promoted nucleation, possibly followed
by a free-growth regime. Finally, we argue that creaming strongly affects
droplet growth during the early stages of emulsification. Future investigations
could clarify the link between quench conditions and resulting microstructure,
paving the way for tailor-made particle-stabilised emulsions from binary
liquids.Comment: http://iopscience.iop.org/0953-8984/22/45/455102
The structure of the Au(111)/methylthiolate interface : new insights from near-edge X-ray absorption spectroscopy and X-ray standing waves
The local structure of the Au(111)([square root of]3×[square root of]3)R30°-methylthiolate surface phase has been investigated by S K-edge near-edge s-ray absorption fine structure (NEXAFS) both experimentally and theoretically and by experimental normal-incidence x-ray standing waves (NIXSW) at both the C and S atomic sites. NEXAFS shows not only excitation into the intramolecular sigma* S–C resonance but also into a sigma* S–Au orbital perpendicular to the surface, clearly identifying the local S headgroup site as atop a Au atom. Simulations show that it is not possible, however, to distinguish between the two possible adatom reconstruction models; a single thiolate species atop a hollow-site Au adatom or a dithiolate moiety comprising two thiolate species bonded to a bridge-bonded Au adatom. Within this dithiolate moiety a second sigma* S–Au orbital that lies near parallel to the surface has a higher energy that overlaps that of the sigma* S–C resonance. The new NIXSW data show the S–C bond to be tilted by 61° relative to the surface normal, with a preferred azimuthal orientation in , corresponding to the intermolecular nearest-neighbor directions. This azimuthal orientation is consistent with the thiolate being atop a hollow-site Au adatom, but not consistent with the originally proposed Au-adatom-dithiolate moiety. However, internal conformational changes within this species could, perhaps, render this model also consistent with the experimental data
The local adsorption structure of benzene on Si(001)-(2 × 1): a photoelectron diffraction investigation
Scanned-energy mode C 1s photoelectron diffraction has been used to investigate the local adsorption geometry of benzene on Si(001) at saturation coverage and room temperature. The results show that two different local bonding geometries coexist, namely the 'standard butterfly' (SB) and 'tilted bridge' (TB) forms, with a composition of 58 ± 29% of the SB species. Detailed structural parameter values are presented for both species including Si–C bond lengths. On the basis of published measurements of the rate of conversion of the SB to the TB form on this surface, we estimate that the timescale of our experiment is sufficient for achieving equilibrium, and in this case our results indicate that the difference in the Gibbs free energy of adsorption, ΔG(TB)−ΔG(SB), is in the range −0.023 to +0.049 eV. We suggest, however, that the relative concentration of the two species may also be influenced by a combination of steric effects influencing the kinetics, and a sensitivity of the adsorption energies of the adsorbed SB and TB forms to the nature of the surrounding benzene molecules
Microscopic dynamics and relaxation processes in liquid Hydrogen Fluoride
Inelastic x-ray scattering and Brillouin light scattering measurements of the
dynamic structure factor of liquid hydrogen fluoride have been performed in the
temperature range. The data, analysed using a viscoelastic
model with a two timescale memory function, show a positive dispersion of the
sound velocity between the low frequency value and the high
frequency value . This finding confirms the existence of
a structural () relaxation directly related to the dynamical
organization of the hydrogen bonds network of the system. The activation energy
of the process has been extracted by the analysis of the temperature
behavior of the relaxation time that follows an Arrhenius law.
The obtained value for , when compared with that observed in another
hydrogen bond liquid as water, suggests that the main parameter governing the
-relaxation process is the number of the hydrogen bonds per molecule.Comment: 9 pages and 12 figure
- …