36 research outputs found

    Primary stability of cementless threaded acetabular cups at first implantation and in the case of revision regarding micromotions as indicators

    Get PDF
    The primary stability of cementless total hip endoprosthesis is of vital importance for proximate, long-term osteointegration. The extent of micromotions between implant and acetabulum is an indicator of primary stability. Based on this hypothesis, different cementless hip joint endoprosthesis were studied with regard to their micromotions. The primary stability of nine different cementless threaded acetabular cups was studied in an experimental setup with blocks of rigid foam. The micromotions between implant and implant bearing were therefore evaluated under cyclic, sinusoidal exposure. The blocks of polymer foam were prepared according to the Paprosky defect classifications. The micromotions increased with the increasing degree of the defect with all acetabuli tested. Occasionally coefficients of over 200 mu m were measured. From a defect degree of 3b according to Paprosky, the implants could no longer be appropriately placed. The exterior form of the spherical implants tended to exhibit better coefficients than the conical/parabolic implants

    Late Periprosthetic Joint Infection due to Staphylococcus lugdunensis Identified by Matrix-Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry: A Case Report and Review of the Literature

    Get PDF
    Staphylococcus lugdunensis, member to the group of coagulase-negative staphylococci, is previously thought to be rarely isolated. Recently other staphylococci have been described, which were supposedly related to S. lugdunensis, such as Staphylococcus pseudolugdunensis and Staphylococcus pettenkoferi. To decrease the rate misidentifications, an accurate identification method, such as matrix-assisted laser desorption ionization time of flight mass spectrometry or molecular methods, should be used. S. lugdunensis is usually associated with severe infections similar to those caused by S. aureus. Moreover, it has been described that skin infections due to S. lugdunensis are severely underreported and could be also underreported in periprosthetic joint infections. Ours is the first case of a late periprosthetic infection of the hip due to S. lugdunensis, identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. A periprosthetic infection due to S. lugdunensis should be treated according to protocols of S. aureus periprosthetic infections, and therefore an accurate species identification is desirable

    How reliable is MRI in diagnosing cartilaginous lesions in patients with first and recurrent lateral patellar dislocations?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lateral dislocation of the patella (LPD) leads to cartilaginous injuries, which have been reported to be associated with retropatellar complaints and the development of patellofemoral osteoarthritis. Therefore, the purpose of this study was to determine the reliability of MRI for cartilage diagnostics after a first and recurrent LPD.</p> <p>Methods</p> <p>After an average of 4.7 days following an acute LPD, 40 patients (21 with first LPDs and 19 with recurrent LPDs) underwent standardized 1.5 Tesla MRI (sagittal T1-TSE, coronal STIR-TSE, transversal fat-suppressed PD-TSE, sagittal fat-suppressed PD-TSE). MRI grading was compared to arthroscopic assessment of the cartilage.</p> <p>Results</p> <p>Sensitivities and positive predictive values for grade 3 and 4 lesions were markedly higher in the patient group with first LPDs compared to the group with recurrent LPDs. Similarly, intra- and inter-observer agreement yielded higher kappa values in patients with first LPDs compared to those with recurrent LPDs. All grade 4 lesions affecting the subchondral bone (osteochondral defects), such as a fissuring or erosion, were correctly assessed on MRI.</p> <p>Conclusions</p> <p>This study demonstrated a comparatively good diagnostic performance for MRI in the evaluation of first and recurrent LPDs, and we therefore recommend MRI for the cartilage assessment after a LPD.</p

    Anatomical and surgical study of volume determination of the anterolateral epidural space nerve root L5/S1 under the aspect of epidural perineural injection in minimal invasive treatment of lumbar nerve root compression

    Get PDF
    Herniated intervertebral disc causes in a great number of cases of lumbar nerve root compression, especially in the segment L5/S1. Other reasons responsible for stress to the lumbar spinal root are the spinal canal stenosis and the postdiscotomy syndrome. For patients without neurological deficiencies, the conservative treatment includes different epidural injection techniques. Steroids are often applied. A specific injection technique needing only a small drug amount is the epidural perineural approach using a special two-needle technique. The anatomical spaces of the nerve roots have received little attention in therapy. We have determined the anterolateral epidural space nerve volume of the nerve root L5/S1, and compared the data collected in an anatomical study with operative measurements during discectomy. The volume determination in the human cadavers was performed with liquid silicone filling the anterolateral space after dissection. The in vivo measurements were performed during surgery at the site of the anterolateral space after discectomy. The anatomical studies showed us a mean value volume of 1.1 ml. The surgical volume determinations result in a mean volume of 0.9 ml. A better understanding of the anterolateral epidural space may allow a reduction of the injection volume in the conservative nerve root compression treatment, especially using the epidural perineural technique, avoiding the risk of side effects of high doses of steroids

    Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with osteoarthritis, a detailed assessment of degenerative cartilage disease is important to recommend adequate treatment. Using a representative sample of patients, this study investigated whether MRI is reliable for a detailed cartilage assessment in patients with osteoarthritis of the knee.</p> <p>Methods</p> <p>In a cross sectional-study as a part of a retrospective case-control study, 36 patients (mean age 53.1 years) with clinically relevant osteoarthritis received standardized MRI (sag. T1-TSE, cor. STIR-TSE, trans. fat-suppressed PD-TSE, sag. fat-suppressed PD-TSE, Siemens Magnetom Avanto syngo MR B 15) on a 1.5 Tesla unit. Within a maximum of three months later, arthroscopic grading of the articular surfaces was performed. MRI grading by two blinded observers was compared to arthroscopic findings. Diagnostic values as well as intra- and inter-observer values were assessed.</p> <p>Results</p> <p>Inter-observer agreement between readers 1 and 2 was good (kappa = 0.65) within all compartments. Intra-observer agreement comparing MRI grading to arthroscopic grading showed moderate to good values for readers 1 and 2 (kappa = 0.50 and 0.62, respectively), the poorest being within the patellofemoral joint (kappa = 0.32 and 0.52). Sensitivities were relatively low at all grades, particularly for grade 3 cartilage lesions. A tendency to underestimate cartilage disorders on MR images was not noticed.</p> <p>Conclusions</p> <p>According to our results, the use of MRI for precise grading of the cartilage in osteoarthritis is limited. Even if the practical benefit of MRI in pretreatment diagnostics is unequivocal, a diagnostic arthroscopy is of outstanding value when a grading of the cartilage is crucial for a definitive decision regarding therapeutic options in patients with osteoarthritis.</p

    GFI1 proteins regulate stem cell formation in the AGM

    Get PDF
    In vertebrates, the first haematopoietic stem cells (HSCs) with multi-lineage and long-term repopulating potential arise in the AGM (aorta-gonad-mesonephros) region. These HSCs are generated from a rare and transient subset of endothelial cells, called haemogenic endothelium (HE), through an endothelial-to-haematopoietic transition (EHT). Here, we establish the absolute requirement of the transcriptional repressors GFI1 and GFI1B (growth factor independence 1 and 1B) in this unique trans-differentiation process. We first demonstrate that Gfi1 expression specifically defines the rare population of HE that generates emerging HSCs. We further establish that in the absence of GFI1 proteins, HSCs and haematopoietic progenitor cells are not produced in the AGM, revealing the critical requirement for GFI1 proteins in intra-embryonic EHT. Finally, we demonstrate that GFI1 proteins recruit the chromatin-modifying protein LSD1, a member of the CoREST repressive complex, to epigenetically silence the endothelial program in HE and allow the emergence of blood cells.We thank the staff at the Advanced Imaging, animal facility, Molecular Biology Core facilities and Flow Cytometry of CRUK Manchester Institute for technical support and Michael Lie-A-Ling and Elli Marinopoulou for initiating the DamID-PIP bioinformatics project. We thank members of the Stem Cell Biology group, the Stem Cell Haematopoiesis groups and Martin Gering for valuable advice and critical reading of the manuscript. Work in our laboratory is supported by the Leukaemia and Lymphoma Research Foundation (LLR), Cancer Research UK (CRUK) and the Biotechnology and Biological Sciences Research Council (BBSRC). SC is the recipient of an MRC senior fellowship (MR/J009202/1).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ncb327
    corecore