7,213 research outputs found
Correlation effects in electronic structure of PuCoGa5
We report on results of the first realistic electronic structure calculations
of the Pu-based PuCoGa5 superconductor based on the dynamical mean field
theory. We find that dynamical correlations due to the local Coulomb
interaction between Pu f-electrons lead to substantial modification of the
electronic structure with a narrow peak being formed in vicinity of the Fermi
energy, in agreement with the experimental photoemission spectra, and in
contrast with the recent calculations within the LDA+U method, where only
static electronic correlations have been included. Both Pu and Co contribute in
equal footing to the narrow peak on the density of states at the Fermi level,
the Co partial density of states being prominently affected by electronic
correlations on the Pu sites. The k-resolved spectral density is calculated and
the theoretical spectral function resolved extended Van Hove singularity near
the Fermi energy. This singularity may lead to enchancement of the magnetic
susceptebility and favour d-wave superconductivity
Adhesion and electronic structure of graphene on hexagonal boron nitride substrates
We investigate the adsorption of graphene sheets on h-BN substrates by means
of first-principles calculations in the framework of adiabatic connection
fluctuation-dissipation theory in the random phase approximation. We obtain
adhesion energies for different crystallographic stacking configurations and
show that the interlayer bonding is due to long-range van der Waals forces. The
interplay of elastic and adhesion energies is shown to lead to stacking
disorder and moir\'e structures. Band structure calculations reveal substrate
induced mass terms in graphene which change their sign with the stacking
configuration. The dispersion, absolute band gaps and the real space shape of
the low energy electronic states in the moir\'e structures are discussed. We
find that the absolute band gaps in the moir\'e structures are at least an
order of magnitude smaller than the maximum local values of the mass term. Our
results are in agreement with recent STM experiments.Comment: 8 pages, 8 figures, revised and extended version, to appear in Phys.
Rev.
Probing of valley polarization in graphene via optical second-harmonic generation
Valley polarization in graphene breaks inversion symmetry and therefore leads
to second-harmonic generation. We present a complete theory of this effect
within a single-particle approximation. It is shown that this may be a
sensitive tool to measure the valley polarization created, e.g., by polarized
light and, thus, can be used for a development of ultrafast valleytronics in
graphene.Comment: 5 pages, 3 figure
An dynamical-mean-field-theory investigation of specific heat and electronic structure of and -plutonium
We have carried out a comparative study of the electronic specific heat and
electronic structure of and -plutonium using dynmical mean
field theory (DMFT). We use the perturbative T-matrix and fluctuating exchange
(T-matrix FLEX) as a quantum impurity solver. We considered two different
physical pictures of plutonoium. In the first, , the perturbative
treatment of electronic correlations has been carried out around the
non-magnetic (LDA) Hamiltonian, which results in an f occupation around a bit
above . In the second, , plutonium is viewed as being close
to an configuration, and perturbation theory is carried out around the
(LDA+U) starting point bit below . In the latter case the electronic
specific heat coefficient attains a smaller value in -Pu than
in -Pu, in contradiction to experiment, while in the former case our
calculations reproduce the experimentally observed large increase of
in -Pu as compared to the phase. This enhancement of the
electronic specific heat coefficient in -Pu is due to strong electronic
correlations present in this phase, which cause a substantial increase of the
electronic effective mass, and high density of states at . The densities
of states of and -plutonium obtained starting from the
open-shell configuration are also in good agreement with the experimental
photoemission spectra.Comment: 6 pages, 3 figure
Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective
In this work, we investigate the adsorption of a single cobalt atom (Co) on
graphene by means of the complete active space self-consistent field approach,
additionally corrected by the second-order perturbation theory. The local
structure of graphene is modeled by a planar hydrocarbon cluster
(CH). Systematic treatment of the electron correlations and the
possibility to study excited states allow us to reproduce the potential energy
curves for different electronic configurations of Co. We find that upon
approaching the surface, the ground-state configuration of Co undergoes several
transitions, giving rise to two stable states. The first corresponds to the
physisorption of the adatom in the high-spin ()
configuration, while the second results from the chemical bonding formed by
strong orbital hybridization, leading to the low-spin () state.
Due to the instability of the configuration, the adsorption energy of Co
is small in both cases and does not exceed 0.35 eV. We analyze the obtained
results in terms of a simple model Hamiltonian that involves Coulomb repulsion
() and exchange coupling () parameters for the 3 shell of Co, which we
estimate from first-principles calculations. We show that while the exchange
interaction remains constant upon adsorption ( eV), the Coulomb
repulsion significantly reduces for decreasing distances (from 5.3 to
2.60.2 eV). The screening of favors higher occupations of the 3
shell and thus is largely responsible for the interconfigurational transitions
of Co. Finally, we discuss the limitations of the approaches that are based on
density functional theory with respect to transition metal atoms on graphene,
and we conclude that a proper account of the electron correlations is crucial
for the description of adsorption in such systems.Comment: 12 pages, 6 figures, 2 table
Interfacial interactions between local defects in amorphous SiO and supported graphene
We present a density functional study of graphene adhesion on a realistic
SiO surface taking into account van der Waals (vdW) interactions. The
SiO substrate is modeled at the local scale by using two main types of
surface defects, typical for amorphous silica: the oxygen dangling bond and
three-coordinated silicon. The results show that the nature of adhesion between
graphene and its substrate is qualitatively dependent on the surface defect
type. In particular, the interaction between graphene and silicon-terminated
SiO originates exclusively from the vdW interaction, whereas the
oxygen-terminated surface provides additional ionic contribution to the binding
arising from interfacial charge transfer (-type doping of graphene). Strong
doping contrast for the different surface terminations provides a mechanism for
the charge inhomogeneity of graphene on amorphous SiO observed in
experiments. We found that independent of the considered surface morphologies,
the typical electronic structure of graphene in the vicinity of the Dirac point
remains unaltered in contact with the SiO substrate, which points to the
absence of the covalent interactions between graphene and amorphous silica. The
case of hydrogen-passivated SiO surfaces is also examined. In this
situation, the binding with graphene is practically independent of the type of
surface defects and arises, as expected, from the vdW interactions. Finally,
the interface distances obtained are shown to be in good agreement with recent
experimental studies.Comment: 10 pages, 4 figure
- …