2,122 research outputs found

    Crystal structure of LaTiO_3.41 under pressure

    Full text link
    The crystal structure of the layered, perovskite-related LaTiO_3.41 (La_5Ti_5O_{17+\delta}) has been studied by synchrotron powder x-ray diffraction under hydrostatic pressure up to 27 GPa (T = 295 K). The ambient-pressure phase was found to remain stable up to 18 GPa. A sluggish, but reversible phase transition occurs in the range 18--24 GPa. The structural changes of the low-pressure phase are characterized by a pronounced anisotropy in the axis compressibilities, which are at a ratio of approximately 1:2:3 for the a, b, and c axes. Possible effects of pressure on the electronic properties of LaTiO_3.41 are discussed.Comment: 5 pages, 6 figure

    When can Fokker-Planck Equation describe anomalous or chaotic transport?

    Full text link
    The Fokker-Planck Equation, applied to transport processes in fusion plasmas, can model several anomalous features, including uphill transport, scaling of confinement time with system size, and convective propagation of externally induced perturbations. It can be justified for generic particle transport provided that there is enough randomness in the Hamiltonian describing the dynamics. Then, except for 1 degree-of-freedom, the two transport coefficients are largely independent. Depending on the statistics of interest, the same dynamical system may be found diffusive or dominated by its L\'{e}vy flights.Comment: 4 pages. Accepted in Physical Review Letters. V2: only some minor change

    Spin of ground state baryons

    Full text link
    We calculate the quark spin contribution to the total angular momentum of flavor octet and flavor decuplet ground state baryons using a spin-flavor symmetry based parametrization method of quantum chromodynamics. We find that third order SU(6) symmetry breaking three-quark operators are necessary to explain the experimental result Sigma_1=0.32(10). For spin 3/2 decuplet baryons we predict that the quark spin contribution is Sigma_3=3.93(22), i.e. considerably larger than their total angular momentum.Comment: 8 page

    A classical scaling theory of quantum resonances

    Full text link
    The quantum resonances occurring with delta-kicked particles are studied with the help of a fictitious classical limit, establishing a direct correspondence between the nearly resonant quantum motion and the classical resonances of a related system. A scaling law which characterizes the structure of the resonant peaks is derived and numerically demonstrated.Comment: 4 pages, 2 Fig

    Tracking quasi-classical chaos in ultracold boson gases

    Full text link
    We study the dynamics of a ultra-cold boson gas in a lattice submitted to a constant force. We track the route of the system towards chaos created by the many-body-induced nonlinearity and show that relevant information can be extracted from an experimentally accessible quantity, the gas mean position. The threshold nonlinearity for the appearance of chaotic behavior is deduced from KAM arguments and agrees with the value obtained by calculating the associated Lyapunov exponent.Comment: 4 pages, revtex4, submitted to PR

    Extremely Small Energy Gap in the Quasi-One-Dimensional Conducting Chain Compound SrNbO3.41_{3.41}

    Get PDF
    Resistivity, optical, and angle-resolved photoemission experiments reveal unusual one-dimensional electronic properties of highly anisotropic SrNbO3.41_{3.41}. Along the conducting chain direction we find an extremely small energy gap of only a few meV at the Fermi level. A discussion in terms of typical 1D instabilities (Peierls, Mott-Hubbard) shows that neither seems to provide a satisfactory explanation for the unique properties of SrNbO3.41_{3.41}.Comment: 4 pages, 3 figure

    Position and velocity space diffusion of test particles in stochastic electromagnetic fields

    Full text link
    The two--dimensional diffusive dynamics of test particles in a random electromagnetic field is studied. The synthetic electromagnetic fluctuations are generated through randomly placed magnetised ``clouds'' oscillating with a frequency ω\omega. We investigate the mean square displacements of particles in both position and velocity spaces. As ω\omega increases the particles undergo standard (Brownian--like) motion, anomalous diffusion and ballistic motion in position space. Although in general the diffusion properties in velocity space are not trivially related to those in position space, we find that energization is present only when particles display anomalous diffusion in position space. The anomalous character of the diffusion is only in the non--standard values of the scaling exponents while the process is Gaussian.Comment: 10 pages, 4 figure

    Pseudo-classical theory for fidelity of nearly resonant quantum rotors

    Get PDF
    Using a semiclassical ansatz we analytically predict for the fidelity of delta-kicked rotors the occurrence of revivals and the disappearance of intermediate revival peaks arising from the breaking of a symmetry in the initial conditions. A numerical verification of the predicted effects is given and experimental ramifications are discussed.Comment: Shortened and improved versio

    Coherent acceleration of material wavepackets in modulated optical fields

    Get PDF
    We study the quantum dynamics of a material wavepacket bouncing off a modulated atomic mirror in the presence of a gravitational field. We find the occurrence of coherent accelerated dynamics for atoms beyond the familiar regime of dynamical localization. The acceleration takes place for certain initial phase space data and within specific windows of modulation strengths. The realization of the proposed acceleration scheme is within the range of present day experimental possibilities

    Degeneracy Between the Regge Slope of Mesons and Baryons from Supersymmetry

    Full text link
    We consider the degeneracy between the Regge slope of mesons and baryons in QCD. We argue that within the "orientifold large-N approximation" asymptotically massive mesons and baryons become supersymmetric partners and hence degenerate. To this end, we generalize QCD by a SU(N) theory with a quark in the two-index antisymmetric representation. We show that in this framework the meson is represented by an oriented bosonic QCD-string and the baryon is represented by an un-oriented fermionic QCD-string. At large-N, due to an equivalence with super Yang-Mills, the tensions of the bosonic and the fermionic strings coincide. Our description of mesons and baryons as oriented and un-oriented bosonic and fermionic QCD-strings is in full agreement with the spectra of open strings in the dual type 0' string theory.Comment: v2: extended version. Appendices and references adde
    • …
    corecore