238 research outputs found

    Material properties of Islamic paper

    Get PDF
    In contrast to scientific research focussing on European paper, there is a significant gap in our knowledge of Islamic papermaking. This research surveys the evidence of techniques and materials typically used in Islamic papermaking, to deduce what might be considered as the most significant characteristics. A substantial collection of 228 Islamic papers (~18th–20th century) was characterized using chemical analytical methods: surface profilometry, gloss measurements, specular vs. diffuse reflectance ratio at 457 nm, scanning electron microscopy and infrared spectroscopy for identification of polishing, iodine test for identification of starch, Raspail test for identification of rosin, and fibre furnish analysis. Morphological analysis was performed to examine the presence of watermarks and sieve patterns. In addition, acidity and degree of polymerization of cellulose in paper were determined to explore the average material state of paper in the collection. Near infrared spectroscopic data of the collection were correlated to chemical properties with the aid of multivariate data analysis methods. Four different models were developed focusing on two main characteristics of Islamic paper: two for identification of polishing and starch, and two quantitative models to determine the acidity and degree of polymerization of cellulose in paper. While no single defining characteristic of Islamic paper was identified, 88 % of all papers in the studied collection either contain starch or are polished, or both. ~2 % of papers contain rosin. The majority of papers are neutral to mildly acidic, which is in contrast to their extensive degradation: ~69 % have DP < 1000. Polishing and starch appear to be associated with current values of pH and DP. The developed non-destructive characterization methodology could be applied to Islamic collections in libraries and archives to expand the database with the material properties of papers of known age and provenance and thus better understand geographic and temporal distributions of papermaking practices in Islamic countries

    Determination of mechanical properties of historical paper based on NIR spectroscopy and chemometrics - a new instrument

    Get PDF
    Due to sampling restrictions in the analysis of cultural heritage materials, non-destructive approaches are intensively sought for. While NIR spectrometry has rarely been used for this purpose due to the complexity of the spectra, chemometric methods can be used to extract the necessary information. For the purpose of determination of mechanical properties of historical paper, partial least squares approach was used and it is shown that tensile strength, and tensile strength after folding, can be estimated based on NIR spectra. As the mechanical properties of paper-based objects define their accessibility, a new dispersive portable instrument was built, which will enable us to rapidly survey the condition of library and archival collections

    Non-destructive collection survey of the historical Classense Library. Part I: Paper characterisation

    Get PDF
    An innovative survey was conducted of the collections of the historical Biblioteca Classense, located in the urban area of Ravenna (Northern Italy). The survey aimed to evaluate the current conservation state of the book collections, where 297 paper-based items, including incunabula, manuscripts and books, dating from the 14th to the 20th century, were selected for analysis. This innovative survey was carried out non-destructively by assessing degradation visually and by measuring NIR spectral data followed by multivariate data analysis. Chemical and physical paper properties, important for paper characterisation and implementation of conservation strategies were determined, including paper type, pH, degree of polymerisation (DP), tensile strength, lignin, protein, and rosin content. This survey provided a significant quantitative dataset for rag paper covering a 600-year period. The analysis of DP changes over time allowed the first experimental estimation of the rate constant for historical rag paper, i.e., (4.2 ± 0.6)·10−7 year−1, which was validated with predictions based on the Collections Demography dose response function for historic paper taking into account the past climate in Ravenna. Statistical methods were employed to describe the correlations between the measured variables and different features of the books, suggesting that the degree of polymerisation can be used as a general proxy for rag paper mechanical strength

    Development and mining of a database of historic European paper properties

    Get PDF
    A database of historic paper properties was developed using 729 samples of European origin (1350–1990), analysed for acidity, degree or polymerisation (DP), molecular weight of cellulose, grammage, tensile strength, as well as contents of ash, aluminium, carbonyl groups, rosin, protein, lignin and fibre furnish. Using Spearman’s rank correlation coefficient and principal component analysis, the data were examined with respect to methods of manufacture, as well as chemical stability of paper. Novel patterns emerged related to loss of DP and accumulation of carbonyl groups and acidity with time and the role of lignin and rosin, as well as rate of degradation (k = 10−5 year−1) at room conditions. In-depth understanding of long-term degradation of lignin and rosin is needed to better understand the relationships between composition and degradation of historic paper. This study highlights the importance of mining significant volumes of analytical data, and its variability, obtained from real historic objects

    Acute high altitude exposure, acclimatization and re-exposure on nocturnal breathing

    Full text link
    Background: Effects of prolonged and repeated high-altitude exposure on oxygenation and control of breathing remain uncertain. We hypothesized that prolonged and repeated high-altitude exposure will improve altitude-induced deoxygenation and breathing instability. Methods: 21 healthy lowlanders, aged 18-30y, underwent two 7-day sojourns at a high-altitude station in Chile (4-8 hrs/day at 5,050 m, nights at 2,900 m), separated by a 1-week recovery period at 520 m. Respiratory sleep studies recording mean nocturnal pulse oximetry (SpO2), oxygen desaturation index (ODI, >3% dips in SpO2), breathing patterns and subjective sleep quality by visual analog scale (SQ-VAS, 0-100% with increasing quality), were evaluated at 520 m and during nights 1 and 6 at 2,900 m in the 1st and 2nd altitude sojourn. Results: At 520 m, mean ± SD nocturnal SpO2 was 94 ± 1%, ODI 2.2 ± 1.2/h, SQ-VAS 59 ± 20%. Corresponding values at 2,900 m, 1st sojourn, night 1 were: SpO2 86 ± 2%, ODI 23.4 ± 22.8/h, SQ-VAS 39 ± 23%; 1st sojourn, night 6: SpO2 90 ± 1%, ODI 7.3 ± 4.4/h, SQ-VAS 55 ± 20% (p < 0.05, all differences within corresponding variables). Mean differences (Δ, 95%CI) in acute effects (2,900 m, night 1, vs 520 m) between 2nd vs 1st altitude sojourn were: ΔSpO2 0% (-1 to 1), ΔODI -9.2/h (-18.0 to -0.5), ΔSQ-VAS 10% (-6 to 27); differences in acclimatization (changes night 6 vs 1), between 2nd vs 1st sojourn at 2,900 m were: ΔSpO2 -1% (-2 to 0), ΔODI 11.1/h (2.5 to 19.7), ΔSQ-VAS -15% (-31 to 1). Conclusion: Acute high-altitude exposure induced nocturnal hypoxemia, cyclic deoxygenations and impaired sleep quality. Acclimatization mitigated these effects. After recovery at 520 m, repeated exposure diminished high-altitude-induced deoxygenation and breathing instability, suggesting some retention of adaptation induced by the first altitude sojourn while subjective sleep quality remained similarly impaired. Keywords: altitude (MeSH); hypoxia; respiration - physiology; respiratory polygraphy; sleep-disordered breathing

    A view of Internet Traffic Shifts at {ISP} and {IXPs} during the {COVID}-19 Pandemic

    Get PDF
    Due to the COVID-19 pandemic, many governments imposed lockdowns that forced hundreds of millions of citizens to stay at home. The implementation of confinement measures increased Internet traffic demands of residential users, in particular, for remote working, entertainment, commerce, and education, which, as a result, caused traffic shifts in the Internet core. In this paper, using data from a diverse set of vantage points (one ISP, three IXPs, and one metropolitan educational network), we examine the effect of these lockdowns on traffic shifts. We find that the traffic volume increased by 15-20% almost within a week – while overall still modest, this constitutes a large increase within this short time period. However, despite this surge, we observe that the Internet infrastructure is able to handle the new volume, as most traffic shifts occur outside of traditional peak hours. When looking directly at the traffic sources, it turns out that, while hypergiants still contribute a significant fraction of traffic, we see (1) a higher increase in traffic of non-hypergiants, and (2) traffic increases in applications that people use when at home, such as Web conferencing, VPN, and gaming. While many networks see increased traffic demands, in particular, those providing services to residential users, academic networks experience major overall decreases. Yet, in these networks, we can observe substantial increases when considering applications associated to remote working and lecturing.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Visuomotor performance at high altitude in COPD patients. Randomized placebo-controlled trial of acetazolamide

    Full text link
    Introduction: We evaluated whether exposure to high altitude impairs visuomotor learning in lowlanders with chronic obstructive pulmonary disease (COPD) and whether this can be prevented by acetazolamide treatment.Methods: 45 patients with COPD, living &lt;800 m, FEV1 ≥40 to &lt;80%predicted, were randomized to acetazolamide (375 mg/d) or placebo, administered 24h before and during a 2-day stay in a clinic at 3100 m. Visuomotor performance was evaluated with a validated, computer-assisted test (Motor-Task-Manager) at 760 m above sea level (baseline, before starting the study drug), within 4h after arrival at 3100 m and in the morning after one night at 3100 m. Main outcome was the directional error (DE) of cursor movements controlled by the participant via mouse on a computer screen during a target tracking task. Effects of high altitude and acetazolamide on DE during an adaptation phase, immediate recall and post-sleep recall were evaluated by regression analyses. www.ClinicalTrials.gov NCT03165890.Results: In 22 patients receiving placebo, DE at 3100 m increased during adaptation by mean 2.5°, 95%CI 2.2° to 2.7° (p &lt; 0.001), during immediate recall by 5.3°, 4.6° to 6.1° (p &lt; 0.001), and post-sleep recall by 5.8°, 5.0 to 6.7° (p &lt; 0.001), vs. corresponding values at 760 m. In 23 participants receiving acetazolamide, corresponding DE were reduced by −0.3° (−0.6° to 0.1°, p = 0.120), −2.7° (−3.7° to −1.6°, p &lt; 0.001) and −3.1° (−4.3° to −2.0°, p &lt; 0.001), compared to placebo at 3100 m.Conclusion: Lowlanders with COPD travelling to 3100 m experienced altitude-induced impairments in immediate and post-sleep recall of a visuomotor task. Preventive acetazolamide treatment mitigated these undesirable effects

    A prospective cohort study about the effect of repeated living high and working higher on cerebral autoregulation in unacclimatized lowlanders

    Full text link
    Cerebral autoregulation (CA) is impaired during acute high-altitude (HA) exposure, however, effects of temporarily living high and working higher on CA require further investigation. In 18 healthy lowlanders (11 women), we hypothesized that the cerebral autoregulation index (ARI) assessed by the percentage change in middle cerebral artery peak blood velocity (Δ%MCAv)/percentage change in mean arterial blood pressure (Δ%MAP) induced by a sit-to-stand maneuver, is (i) reduced on Day1 at 5050 m compared to 520 m, (ii) is improved after 6 days at 5050 m, and (iii) is less impaired during re-exposure to 5050 m after 7 days at 520 m compared to Cycle1. Participants spent 4-8 h/day at 5050 m and slept at 2900 m similar to real-life working shifts. High/low ARI indicate impaired/intact CA, respectively. With the sit-to-stand at 520 m, mean (95% CI) in ΔMAP and ΔMCAv were − 26% (− 41 to − 10) and − 13% (− 19 to − 7), P < 0.001 both comparisons; mean ± SD in ARI was 0.58 ± 2.44Δ%/Δ%, respectively. On Day1 at 5050 m, ARI worsened compared to 520 m (3.29 ± 2.42Δ%/Δ%), P = 0.006 but improved with acclimatization (1.44 ± 2.43Δ%/Δ%, P = 0.039). ARI was less affected during re-exposure to 5050 m (1.22 ± 2.52Δ%/Δ%, P = 0.027 altitude-induced change between sojourns). This study showed that CA (i) is impaired during acute HA exposure, (ii) improves with living high, working higher and (iii) is ameliorated during re-exposure to HA

    DDoS Hide &amp; Seek:On the effectiveness of a booter services takedown

    Get PDF
    Booter services continue to provide popular DDoS-as-a-service platforms and enable anyone irrespective of their technical ability, to execute DDoS attacks with devastating impact. Since booters are a serious threat to Internet operations and can cause significant financial and reputational damage, they also draw the attention of law enforcement agencies and related counter activities. In this paper, we investigate booter-based DDoS attacks in the wild and the impact of an FBI takedown targeting 15 booter websites in December 2018 from the perspective of a major IXP and two ISPs. We study and compare attack properties of multiple booter services by launching Gbps-level attacks against our own infrastructure. To understand spatial and temporal trends of the DDoS traffic originating from booters we scrutinize 5 months, worth of inter-domain traffic. We observe that the takedown only leads to a temporary reduction in attack traffic. Additionally, one booter was found to quickly continue operation by using a new domain for its website
    corecore