11 research outputs found

    Coastal high-frequency radars in the Mediterranean - Part 2: Applications in support of science priorities and societal needs

    Get PDF
    The Mediterranean Sea is a prominent climate-change hot spot, with many socioeconomically vital coastal areas being the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, high-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in coastal ocean observing systems worldwide, with more than half of the European sites located in the Mediterranean coastal areas. In this work, we present a review of existing HFR data multidisciplinary science-based applications in the Mediterranean Sea, primarily focused on meeting end-user and science-driven requirements, addressing regional challenges in three main topics: (i) maritime safety, (ii) extreme hazards and (iii) environmental transport process. Additionally, the HFR observing and monitoring regional capabilities in the Mediterranean coastal areas required to underpin the underlying science and the further development of applications are also analyzed. The outcome of this assessment has allowed us to provide a set of recommendations for future improvement prospects to maximize the contribution to extending science-based HFR products into societally relevant downstream services to support blue growth in the Mediterranean coastal areas, helping to meet the UN's Decade of Ocean Science for Sustainable Development and the EU's Green Deal goals

    Coastal high-frequency radars in the Mediterranean - Part 1: Status of operations and a framework for future development

    Get PDF
    Due to the semi-enclosed nature of the Mediterranean Sea, natural disasters and anthropogenic activities impose stronger pressures on its coastal ecosystems than in any other sea of the world. With the aim of responding adequately to science priorities and societal challenges, littoral waters must be effectively monitored with high-frequency radar (HFR) systems. This land-based remote sensing technology can provide, in near-real time, fine-resolution maps of the surface circulation over broad coastal areas, along with reliable directional wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network and the future roadmap for orchestrated actions. Ongoing collaborative efforts and recent progress of this regional alliance are not only described but also connected with other European initiatives and global frameworks, highlighting the advantages of this cost-effective instrument for the multi-parameter monitoring of the sea state. Coordinated endeavors between HFR operators from different multi-disciplinary institutions are mandatory to reach a mature stage at both national and regional levels, striving to do the following: (i) harmonize deployment and maintenance practices; (ii) standardize data, metadata, and quality control procedures; (iii) centralize data management, visualization, and access platforms; and (iv) develop practical applications of societal benefit that can be used for strategic planning and informed decision-making in the Mediterranean marine environment. Such fit-for-purpose applications can serve for search and rescue operations, safe vessel navigation, tracking of marine pollutants, the monitoring of extreme events, the investigation of transport processes, and the connectivity between offshore waters and coastal ecosystems. Finally, future prospects within the Mediterranean framework are discussed along with a wealth of socioeconomic, technical, and scientific challenges to be faced during the implementation of this integrated HFR regional network

    Coastal sea level monitoring in the Mediterranean and Black seas

    Get PDF
    Employed for over a century, the traditional way of monitoring sea level variability by tide gauges – in combination with modern observational techniques like satellite altimetry – is an inevitable ingredient in sea level studies over the climate scales and in coastal seas. The development of the instrumentation, remote data acquisition, processing, and archiving in the last decades has allowed the extension of the applications to a variety of users and coastal hazard managers. The Mediterranean and Black seas are examples of such a transition – while having a long tradition of sea level observations with several records spanning over a century, the number of modern tide gauge stations is growing rapidly, with data available both in real time and as a research product at different time resolutions. As no comprehensive survey of the tide gauge networks has been carried out recently in these basins, the aim of this paper is to map the existing coastal sea level monitoring infrastructures and the respective data availability. The survey encompasses a description of major monitoring networks in the Mediterranean and Black seas and their characteristics, including the type of sea level sensors, measuring resolutions, data availability, and existence of ancillary measurements, altogether collecting information about 240 presently operational tide gauge stations. The availability of the Mediterranean and Black seas sea level data in the global and European sea level repositories has been also screened and classified following their sampling interval and level of quality check, pointing to the necessity of harmonization of the data available with different metadata and series in different repositories. Finally, an assessment of the networks' capabilities for their use in different sea level applications has been done, with recommendations that might mitigate the bottlenecks and ensure further development of the networks in a coordinated way, a critical need in the era of human-induced climate changes and sea level rise.En prens

    On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations

    Get PDF
    This study investigates the potential of ensemble forecasting using full realistic high-resolution nested atmosphere–ocean models for the prediction of meteotsunamis in Ciutadella (Menorca, Spain). The sensitivity of model results to the parameterizations of the atmospheric model is assessed considering the ten most significant recent meteotsunami events for which observations are available. Different schemes adapted to high-resolution Weather Research and Forecasting model simulations were used for the representation of cumulus, microphysics, planetary boundary layer and longwave and shortwave radiations. Results indicate a large spread of the ensemble simulations in terms of the final magnitude of the meteotsunamis. While the modeling system is shown to be able to realistically trigger tsunamigenic atmospheric disturbances in more than 90% of the situations, the small-scale characteristics of these disturbances are significantly modified with the change of parameterizations, leading to significant differences in the magnitude of the simulated sea-level response. No preferred set of parameterizations can be identified that leads to either the largest or the most realistic magnitudes in the majority of situations. Instead, the performance of a given set of parameterizations is found to change with the meteotsunami event under consideration. Importantly, the observed magnitude of the extreme sea-level oscillations lies within the range of a nine-member ensemble in 70% of the cases. This ensemble approach would then allow to generate a realistic range of possibilities in the majority of events, thus improving the realism of meteotsunami predictions compared to single deterministic forecasts

    Balearic Rissaga forecasting system: recent progress and study of meteotsunami propagation under synthetic gravity wave forcing

    No full text
    Trabajo presentado en la MonGOOS general assembly, celebrada en Split (Croacia), del 15 al 17 de noviembre de 2016Peer Reviewe

    Balearic Rissaga Forecasting System: studying meteotsunami propagation under synthetic gravity wave forcing and revisting the 2006 event

    No full text
    Trabajo presentado en la MonGOOS general assembly, celebrada en Split (Croacia), del 15 al 17 de noviembre de 2016Peer Reviewe

    Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere-ocean coupling

    No full text
    We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic bora wind event in February 2012, which led to extreme air-sea interactions. The simulations span the period between January and March 2012. The models used were ALADIN (Aire Limiteé Adaptation dynamique Développement InterNational) (4.4 km resolution) on the atmosphere side and an Adriatic setup of Princeton ocean model (POM) (130 × 130 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to sea surface temperature. We have compared modeled atmosphere-ocean fluxes and sea temperatures from both setups to platform and CTD (conductivity, temperature, and depth) measurements from three locations in the northern Adriatic. We present objective verification of 2 m atmosphere temperature forecasts using mean bias and standard deviation of errors scores from 23 meteorological stations in the eastern part of Italy. We show that turbulent fluxes from both setups differ up to 20 % during the bora but not significantly before and after the event. When compared to observations, two-way coupling ocean temperatures exhibit a 4 times lower root mean square error (RMSE) than those from one-way coupled system. Two-way coupling improves sensible heat fluxes at all stations but does not improve latent heat loss. The spatial average of the two-way coupled atmosphere component is up to 0.3 °C colder than the one-way coupled setup, which is an improvement for prognostic lead times up to 20 h. Daily spatial average of the standard deviation of air temperature errors shows 0.15 °C improvement in the case of coupled system compared to the uncoupled. Coupled and uncoupled circulations in the northern Adriatic are predominantly wind-driven and show no significant mesoscale differences. © 2016 Author(s)
    corecore