2,114 research outputs found

    The 1988 Solar Maximum Mission event list

    Get PDF
    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1988 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x ray burst spectrometer; (3) flat crystal spectrometers; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronagraph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts, or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observation. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included

    Colloids with key-lock interactions: non-exponential relaxation, aging and anomalous diffusion

    Full text link
    The dynamics of particles interacting by key-lock binding of attached biomolecules are studied theoretically. Experimental realizations of such systems include colloids grafted with complementary single-stranded DNA (ssDNA), and particles grafted with antibodies to cell-membrane proteins. Depending on the coverage of the functional groups, we predict two distinct regimes. In the low coverage localized regime, there is an exponential distribution of departure times. As the coverage is increased the system enters a diffusive regime resulting from the interplay of particle desorption and diffusion. This interplay leads to much longer bound state lifetimes, a phenomenon qualitatively similar to aging in glassy systems. The diffusion behavior is analogous to dispersive transport in disordered semiconductors: depending on the interaction parameters it may range from a finite renormalization of the diffusion coefficient to anomalous, subdiffusive behavior. We make connections to recent experiments and discuss the implications for future studies.Comment: v2: substantially revised version, new treatment of localized regime, 19 pages, 10 figure

    The 1980 solar maximum mission event listing

    Get PDF
    Information is contained on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1980 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Hard X-Ray Imaging Spectrometer, (4) Flat Crystal Spectrometer, (5) Bent Crystal Spectrometer, (6) Ultraviolet Spectrometer and Polarimeter, and (7) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from Sun center are also included

    The 1984 - 1987 Solar Maximum Mission event list

    Get PDF
    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1984-1987 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x-ray burst spectrometer; (3) flat crystal spectrometer; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronograph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included

    Statistical Mechanics of DNA-Mediated Colloidal Aggregation

    Full text link
    We present a statistical mechanical model of aggregation in colloidal systems with DNA mediated interactions. We obtain a general result for the two-particle binding energy in terms of the hybridization free energy ΔG\Delta G of DNA and two model dependent properties: the average number of available DNA bridges \left and the effective DNA conccentration ceffc_{eff}. We calculate these parameters for a particular DNA bridging scheme. The fraction of all the nn-mers, including the infinite aggregate, are shown to be universal functions of a single parameter directly related to the two-particle binding energy. We explicitly take into account the partial ergodicity of the problem resulting from the slow DNA binding-unbinding dynamics, and introduce the concept of angular localization of DNA linkers. In this way, we obtain a direct link between DNA thermodynamics and the global aggregation and melting properties in DNA-colloidal systems. The results of the theory are shown to be in quantitative agreement with two recent experiments with particles of micron and nanometer size. PACS numbers: 81.16.Dn, 82.20.Db, 68.65.-k, 87.14.GgComment: 12 pages, 6 figures, v2: added reference, expanded conclusion, added journal re

    The 1989 Solar Maximum Mission event list

    Get PDF
    This document contains information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1989 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Flat Crystal Spectrometer, (4) Bent Crystal Spectrometer, (5) Ultraviolet Spectrometer Polarimeter, and (6) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Satellite (GOES) X-ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included

    Doubly Special Relativity with a minimum speed and the Uncertainty Principle

    Full text link
    The present work aims to search for an implementation of a new symmetry in the space-time by introducing the idea of an invariant minimum speed scale (VV). Such a lowest limit VV, being unattainable by the particles, represents a fundamental and preferred reference frame connected to a universal background field (a vacuum energy) that breaks Lorentz symmetry. So there emerges a new principle of symmetry in the space-time at the subatomic level for very low energies close to the background frame (vVv\approx V), providing a fundamental understanding for the uncertainty principle, i.e., the uncertainty relations should emerge from the space-time with an invariant minimum speed.Comment: 10 pages, 8 figures, Correlated paper in: http://www.worldscientific.com/worldscinet/ijmpd?journalTabs=read. arXiv admin note: substantial text overlap with arXiv:physics/0702095, arXiv:0705.4315, arXiv:0709.1727, arXiv:0805.120

    Posterior parietal cortex guides visual decisions in rats

    Get PDF
    Neurons in putative decision-making structures can reflect both sensory and decision signals, making their causal role in decisions unclear. Here, we tested whether rat posterior parietal cortex (PPC) is causal for processing visual sensory signals or instead for accumulating evidence for decision alternatives. We optogenetically disrupted PPC activity during decision-making and compared effects on decisions guided by auditory vs. visual evidence. Deficits were largely restricted to visual decisions. To further test for visual dominance in PPC, we evaluated electrophysiological responses following individual sensory events and observed much larger response modulation following visual stimuli than auditory stimuli. Finally, we measured trial-to-trial spike count variability during stimulus presentation and decision formation. Variability sharply decreased, suggesting the network is stabilized by inputs, unlike what would be expected if sensory signals were locally accumulated. Our findings argue that PPC plays a causal role in processing visual signals that are accumulated elsewhere.SIGNIFICANCE STATEMENTDefining the neural circuits that support decision-making bridges a gap between our understanding of simple sensorimotor reflexes and our understanding of truly complex behavior. However, identifying brain areas which play a causal role in decision-making has proved challenging. We tested the causal role of a candidate component of decision circuits, the rat posterior parietal cortex (PPC). Our interpretation of the data benefitted from our use of animals trained to make decisions guided by either visual or auditory evidence. Our results argue that PPC plays a causal role specifically in visual decision-making, and that PPC may support sensory aspects of the decision, such as interpreting the visual signals so that evidence for a decision can be accumulated elsewhere

    Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves

    Full text link
    We define complexes of vector bundles on products of moduli spaces of framed rank r torsion-free sheaves on the complex projective plane. The top non-vanishing Chern classes of the cohomology of these complexes yield actions of the r-colored Heisenberg and Clifford algebras on the equivariant cohomology of the moduli spaces. In this way we obtain a geometric realization of the boson-fermion correspondence and related vertex operators.Comment: 36 pages; v2: Definition of geometric Heisenberg operators modified; v3: Minor typos correcte

    Science through Machine Learning: Quantification of Poststorm Thermospheric Cooling

    Full text link
    Machine learning (ML) is often viewed as a black-box regression technique that is unable to provide considerable scientific insight. ML models are universal function approximators and - if used correctly - can provide scientific information related to the ground-truth dataset used for fitting. A benefit to ML over parametric models is that there are no predefined basis functions limiting the phenomena that can be modeled. In this work, we develop ML models on three datasets: the Space Environment Technologies (SET) High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched dataset of outputs from the Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer-derived density dataset from CHAllenging Minisatellite Payload (CHAMP). These ML models are compared to the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS 2.0) model to study the presence of post-storm cooling in the middle-thermosphere. We find that both NRLMSIS 2.0 and JB2008-ML do not account for post-storm cooling and consequently perform poorly in periods following strong geomagnetic storms (e.g. the 2003 Halloween storms). Conversely, HASDM-ML and CHAMP-ML do show evidence of post-storm cooling indicating that this phenomenon is present in the original datasets. Results show that density reductions up to 40% can occur 1--3 days post-storm depending on location and the strength of the storm
    corecore