619 research outputs found
Radiation-Pressure-Mediated Control of an Optomechanical Cavity
We describe and demonstrate a method to control a detuned movable-mirror
Fabry-Perot cavity using radiation pressure in the presence of a strong optical
spring. At frequencies below the optical spring resonance, self-locking of the
cavity is achieved intrinsically by the optomechanical (OM) interaction between
the cavity field and the movable end mirror. The OM interaction results in a
high rigidity and reduced susceptibility of the mirror to external forces.
However, due to a finite delay time in the cavity, this enhanced rigidity is
accompanied by an anti-damping force, which destabilizes the cavity. The cavity
is stabilized by applying external feedback in a frequency band around the
optical spring resonance. The error signal is sensed in the amplitude
quadrature of the transmitted beam with a photodetector. An amplitude modulator
in the input path to the cavity modulates the light intensity to provide the
stabilizing radiation pressure force
Towards magnetic slowing of atoms and molecules
We outline a method to slow paramagnetic atoms or molecules using pulsed
magnetic fields. We also discuss the possibility of producing trapped particles
by adiabatic deceleration of a magnetic trap. We present numerical simulation
results for the slowing and trapping of molecular oxygen
Finding Apparent Horizons in Dynamic 3D Numerical Spacetimes
We have developed a general method for finding apparent horizons in 3D
numerical relativity. Instead of solving for the partial differential equation
describing the location of the apparent horizons, we expand the closed 2D
surfaces in terms of symmetric trace--free tensors and solve for the expansion
coefficients using a minimization procedure. Our method is applied to a number
of different spacetimes, including numerically constructed spacetimes
containing highly distorted axisymmetric black holes in spherical coordinates,
and 3D rotating, and colliding black holes in Cartesian coordinates.Comment: 19 pages, 13 figures, LaTex, to appear in Phys. Rev. D. Minor changes
mad
New Coordinate Systems for Axisymmetric Black Hole Collisions
We describe a numerical grid generating procedure to construct new classes of
orthogonal coordinate systems that are specially adapted to binary black hole
spacetimes. The new coordinates offer an alternative approach to the
conventional \v{C}ade\v{z} coordinates, in addition to providing a potentially
more stable and flexible platform to extend previous calculations of binary
black hole collisions.Comment: 3 pages, 5 postscript figures, LaTeX, uses mprocl.sty (available at
http://shemesh.fiz.huji.ac.il/MG8/submission.html) To appear in the
proceedings of the Marcel Grossmann 8 (Jerusalem, 1997
- …
