619 research outputs found

    Radiation-Pressure-Mediated Control of an Optomechanical Cavity

    Get PDF
    We describe and demonstrate a method to control a detuned movable-mirror Fabry-Perot cavity using radiation pressure in the presence of a strong optical spring. At frequencies below the optical spring resonance, self-locking of the cavity is achieved intrinsically by the optomechanical (OM) interaction between the cavity field and the movable end mirror. The OM interaction results in a high rigidity and reduced susceptibility of the mirror to external forces. However, due to a finite delay time in the cavity, this enhanced rigidity is accompanied by an anti-damping force, which destabilizes the cavity. The cavity is stabilized by applying external feedback in a frequency band around the optical spring resonance. The error signal is sensed in the amplitude quadrature of the transmitted beam with a photodetector. An amplitude modulator in the input path to the cavity modulates the light intensity to provide the stabilizing radiation pressure force

    Towards magnetic slowing of atoms and molecules

    Get PDF
    We outline a method to slow paramagnetic atoms or molecules using pulsed magnetic fields. We also discuss the possibility of producing trapped particles by adiabatic deceleration of a magnetic trap. We present numerical simulation results for the slowing and trapping of molecular oxygen

    Finding Apparent Horizons in Dynamic 3D Numerical Spacetimes

    Get PDF
    We have developed a general method for finding apparent horizons in 3D numerical relativity. Instead of solving for the partial differential equation describing the location of the apparent horizons, we expand the closed 2D surfaces in terms of symmetric trace--free tensors and solve for the expansion coefficients using a minimization procedure. Our method is applied to a number of different spacetimes, including numerically constructed spacetimes containing highly distorted axisymmetric black holes in spherical coordinates, and 3D rotating, and colliding black holes in Cartesian coordinates.Comment: 19 pages, 13 figures, LaTex, to appear in Phys. Rev. D. Minor changes mad

    New Coordinate Systems for Axisymmetric Black Hole Collisions

    Get PDF
    We describe a numerical grid generating procedure to construct new classes of orthogonal coordinate systems that are specially adapted to binary black hole spacetimes. The new coordinates offer an alternative approach to the conventional \v{C}ade\v{z} coordinates, in addition to providing a potentially more stable and flexible platform to extend previous calculations of binary black hole collisions.Comment: 3 pages, 5 postscript figures, LaTeX, uses mprocl.sty (available at http://shemesh.fiz.huji.ac.il/MG8/submission.html) To appear in the proceedings of the Marcel Grossmann 8 (Jerusalem, 1997
    corecore