24 research outputs found

    The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum

    Get PDF
    The K650E substitution in the fibroblast growth factor receptor 3 (FGFR3) causes constitutive tyrosine kinase activity of the receptor and is associated to the lethal skeletal disorder, thanatophoric dysplasia type II (TDII). The underlying mechanisms of how the activated FGFR3 causes TDII remains to be elucidated. FGFR3 is a transmembrane glycoprotein, which is synthesized through three isoforms, with various degrees of N-glycosylation. We have studied whether immature FGFR3 isoforms mediate the abnormal signaling in TDII. We show that synthesis of TDII-FGFR3 presents two phosphorylated forms: the immature non-glycosylated 98-kDa peptides and the intermediate 120-kDa glycomers. The mature, fully glycosylated 130-kDa forms, detected in wild type FGFR3, are not present in TDII. Endoglycosidase H cleaves the sugars on TDII intermediates thus indicating their intracellular localization in the endoplasmic reticulum. Accordingly, TDII-FGFR3-GFP co-localizes with calreticulin in the endoplasmic reticulum. Furthermore, following TDII transfection, signal transducer and activator of transcription 1 (STAT1) is phosphorylated in the absence of FGFR3 ligand and brefeldin A does not inhibit its activation. On the contrary, the cell membrane-anchored FRS2alpha protein is not activated in TDII cells. The opposite situation is observed in stable TDII cell clones where, despite the presence of phosphorylated mature receptor, STAT1 is not activated whereas FRS2alpha is phosphorylated. We speculate that the selection process favors cells defective in STAT1 activation through the 120-kDa TDII-FGFR3, thus allowing growth of the TDII cell clones. Accordingly, apoptosis is observed following TDII-FGFR3 transfection. These observations highlight the importance of the immature TDII-FGFR3 proteins as mediators of an abnormal signaling in TDII

    Heterogeneity of Signal Transducer and Activator of Transcription Binding Sites in the Long-Terminal Repeats of Distinct HIV-1 Subtypes

    Get PDF
    HIV-1 can be subdivided into distinct subtypes; the consequences of such a genomic variability remain largely speculative. The long terminal repeats (LTR) control HIV transcription and reflect the major differences of distinct viral subtypes. Three regions in the HIV-1 subtype B LTR are close matches to the Signal Transducer and Activator of Transcription (STAT) consensus sequence. Here, we show heterogeneity in these putative STAT binding sites among HIV-1 LTR subtypes A through G. Transfection of constitutively activated STAT5 lead to transcriptional activation of HIV-1 expression in 293T cells transfected with a reporter assay driven by HIV-1 LTR subtype B. Constitutively activated STAT5 transactivated the LTR of various subtypes in U937 cells with different potency. These findings support and expand the potential relevance of STAT5 activation in HIV infection and may bear relevance for a differential regulation of latency and expression of different subtypes of HIV-1

    The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum.

    No full text
    The K650E substitution in the fibroblast growth factor receptor 3 (FGFR3) causes constitutive tyrosine kinase activity of the receptor and is associated to the lethal skeletal disorder, thanatophoric dysplasia type II (TDII). The underlying mechanisms of how the activated FGFR3 causes TDII remains to be elucidated. FGFR3 is a transmembrane glycoprotein, which is synthesized through three isoforms, with various degrees of N-glycosylation. We have studied whether immature FGFR3 isoforms mediate the abnormal signaling in TDII. We show that synthesis of TDII-FGFR3 presents two phosphorylated forms: the immature non-glycosylated 98-kDa peptides and the intermediate 120-kDa glycomers. The mature, fully glycosylated 130-kDa forms, detected in wild type FGFR3, are not present in TDII. Endoglycosidase H cleaves the sugars on TDII intermediates thus indicating their intracellular localization in the endoplasmic reticulum. Accordingly, TDII-FGFR3-GFP co-localizes with calreticulin in the endoplasmic reticulum. Furthermore, following TDII transfection, signal transducer and activator of transcription 1 (STAT1) is phosphorylated in the absence of FGFR3 ligand and brefeldin A does not inhibit its activation. On the contrary, the cell membrane-anchored FRS2alpha protein is not activated in TDII cells. The opposite situation is observed in stable TDII cell clones where, despite the presence of phosphorylated mature receptor, STAT1 is not activated whereas FRS2alpha is phosphorylated. We speculate that the selection process favors cells defective in STAT1 activation through the 120-kDa TDII-FGFR3, thus allowing growth of the TDII cell clones. Accordingly, apoptosis is observed following TDII-FGFR3 transfection. These observations highlight the importance of the immature TDII-FGFR3 proteins as mediators of an abnormal signaling in TDII

    K644E/M FGFR3 mutants activate Erk1/2 from the endoplasmic reticulum through FRS2a and PLCgamma-independent pathways

    No full text
    Fibroblast growth factor receptors 3 (FGFR3) with K644M/E substi- tutions are associated to the severe skeletal dysplasias: severe achondroplasia with developmental delay and achanthosis nigricans- (SADDAN) and thanatophoric dysplasia(TDII). The high levels of kinase activity of the FGFR3-mutants cause uncompleted biosynthesis that results in the accumulation of the immature/mannose-rich, phosphory- lated receptors in the endoplasmic reticulum (ER) and STATs activation. Here we report that FGFR3 mutants activate Erk1/2 from the ER through an FRS2-independent pathway: instead, a multimeric complex by directly recruiting PLCg, Pyk2 and JAK1 is formed. The Erk1/2 activation from the ER however, is PLCg-independent, since preventing the PLCg/FGFR3 interaction by the Y754F substitution does not inhibit Erks. Furthermore, Erk1/2 activation is abrogated upon treatment with the Src inhibitor PP2, suggesting a role played by a Src family member in the pathway from the ER. Finally we show that the intrinsic kinase activity by mutant receptors is required to allow signaling from the ER. Overall these results highlight how activated FGFR3 exhibits signaling activity in the early phase of its biosynthesis and how segregation in a sub-cellular compartment can affect the FGFR3 multi-faceted capacity to recruit specific substrates

    The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling

    Get PDF
    Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases

    The Kinase Activity of Fibroblast Growth Factor Receptor 3 with Activation Loop Mutations Affects Receptor Trafficking and Signaling

    Full text link
    View of the baths, depicting arch; From the 2nd century AD onwards, gymnasia combining palaestras and baths occupied a large area of the city of Ephesos. Their strong walls and vaults made them expensive to build, and the large quantities of water needed to operate them had to be supplied through reinforced pipes. Surviving buildings include the Vedius Gymnasium, the Theatre Gymnasium, the 'East Gymnasium', the Baths of Varius (renovated in Late Antiquity by a certain Scholastikia) and the Harbour Gymnasium (all mainly 2nd to 3rd century AD). The most usual masonry for walls and vaults in the 1st century AD was rough stonework bonded with lime mortar. In the early 2nd century AD construction in brick began, using square bricks the size of a Roman foot. At the end of the 2nd century AD the bricks became larger, and broken bricks are also found in the opus caementum filling of the great walls of bath buildings. Stone masonry in conjunction with brickwork first occurs in Late Antiquity. [The mosaics in the 40 meter long corridor dates to the 5th century. It has three sections, frigidarium (cold water), tepidarium (warm water) and caldarium (hot water).] Source: Grove Art Online; http://www.oxfordartonline.com/ (accessed 7/13/2008

    Erythropoietin receptor signals both proliferation and erythroid-specific differentiation

    No full text
    Ectopic expression of the erythropoietin receptor (EPO-R) in Ba/F3, an interleukin 3-dependent progenitor cell line, confers EPO-dependent cell growth. To examine whether the introduced EPO-R could affect differentiation, we isolated Ba/F3-EPO-R subclones in interleukin 3 and assayed for the induction of beta-globin mRNA synthesis after exposure to EPO. Detection of beta-globin mRNA was observed within 3 days of EPO treatment, with peak levels accumulating after 10 days. When EPO was withdrawn, expression of beta-globin mRNA persisted in most clones, suggesting that commitment to erythroid differentiation had occurred. Although EPO-R expression also supports EPO-dependent proliferation of CTLL-2, a mature T-cell line, those cells did not produce globin transcripts, presumably because they lack requisite cellular factors involved in erythrocyte differentiation. We conclude that the EPO-R transmits signals important for both proliferation and differentiation along the erythroid lineage

    SADDAN-FGFR3 signalling involves paxillin phosphorylation and causes cytoskeleton disorganization.

    No full text
    Mutations in the fibroblast growth factor receptor 3 (FGFR3) gene cause chondrodysplasias. FGFR3 is a tyrosine kinase (TK) receptor playing a key role in skeletal development as a negative regulator of bone growth. In this study, we analyzed gain-of-function mutations associated with Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN) and with Thanatophoric Dysplasia type II (TDII). In these two severe dwarfisms, FGFR3 carries the K650M and K650E substitutions, respectively, located in the activation loop of the TK-domain. Both substitutions result in a strong ligand-independent constitutive FGFR3 activation. The highly phosphorylated SADDAN and TDII receptors fail to reach full maturation and accumulate in their immature high mannose-rich forms in the endoplasmic reticulum, from where they induce abnormal signalling. We analyzed whether the SADDAN-FGFR3 mutant could affect cytoskeletal organization through paxillin (PXN) activation. PXN is a focal adhesion-associated protein playing a key role in cytoskeletal organization and cell morphology regulation. A critical site for PXN activation is phosphorylation at tyrosine (Tyr) 118 through FAK and Src proteins. Our data show that SADDAN-FGFR3 enhances PXN phosphorylation at Tyr-118 and causes cell morphology changes. The SADDAN-KD (kinase dead) mutant, lacking kinase activity, did not affect PXN phosphorylation, indicating the requirement of receptor enzymatic activity. Similar results were obtained with the SADDAN-Y754F double mutant abolishing the interaction with PLC\u3b31, suggesting a role for this effector in PXN activation. Interestingly, the TDII-FGFR3 mutant, although highly auto-phosphorylated, did not increase PXN phosphorylation, suggesting that PXN is a specific target of SADDAN-FGFR3. The results of this study will contribute to clarify the molecular events leading to actin cytoskeletal disorganization by SADDAN-FGFR3

    Positive selection of apoptosis-resistant cells correlates with activation of dominant-negative STAT5

    Get PDF
    The STAT5 activation has important roles in cell differentiation, cell cycle control, and development. However, the potential implications of STAT5 in the control of apoptosis remain unexplored. To evaluate any possible link between the erythropoietin receptor (EpoR) JAK2/STAT5 transduction pathway and apoptosis, we have investigated apoptosis, resistant cells (ApoR) that arose from positive selection of the erythroid-committed Ba/F3EpoR cells triggered to apoptosis by ectopic expression of the HOX-B8 homeotic gene. We show that JAK2 is normally activated by Epo in both Ba/F3EpoR and ApoR cells. In contrast, both STAT5a and STAT5b isoforms are uniquely activated in a C- truncated form (86 kDa) only in ApoR cells. Analysis of ApoR and Ba/F3EpoR subclones confirmed that the switch to the truncated STAT5 isoform coincides with apoptosis survival and that ApoR do not derive from preexisting cells with a shortened STAT5. In addition, ApoR cells die in the absence of Epo. This indicates that resistance to apoptosis is not because of a general defect in the apoptotic pathway of ApoR cells. Furthermore, we show that the 86-kDa STAT5 protein presents a dominant-negative (DN) character. We hypothesize that the switch to aDN STAT5 may be part of a mechanism that allows ApoR cells to be selectively advantaged during apoptosis. In conclusion, we provide evidence for a functional correlation between a naturally occurring DN STAT5 and a biological response
    corecore