11 research outputs found

    The role of mirroring and mentalizing networks in mediating action intentions in autism

    Get PDF
    Abstract Background The ability to interpret agents’ intent from their actions is a vital skill in successful social interaction. However, individuals with autism spectrum disorders (ASD) have been found to have difficulty in attributing intentions to others. The present study investigated the neural mechanisms of inferring intentions from actions in individuals with ASD. Methods Functional magnetic resonance imaging (fMRI) data were acquired from 21 high-functioning young adults with ASD and 22 typically developing (TD) control participants, while making judgments about the means (how an action is performed) and intention (why an action is performed) of a model’s actions. Results Across both groups of participants, the middle and superior temporal cortex, extending to temporoparietal junction, and posterior cingulate cortex, responded significantly to inferring the intent of an action, while inferior parietal lobule and occipital cortices were active for judgments about the means of an action. Participants with ASD had significantly reduced activation in calcarine sulcus and significantly increased activation in left inferior frontal gyrus, compared to TD peers, while attending to the intentions of actions. Also, ASD participants had weaker functional connectivity between frontal and posterior temporal regions while processing intentions. Conclusions These results suggest that processing actions and intentions may not be mutually exclusive, with reliance on mirroring and mentalizing mechanisms mediating action understanding. Overall, inferring information about others’ actions involves activation of the mirror neuron system and theory-of-mind regions, and this activation (and the synchrony between activated brain regions) appears altered in young adults with ASD

    Persistence of megalencephaly in a subgroup of young boys with autism spectrum disorder.

    No full text
    A recurring finding in autism spectrum disorder research is that head and brain growth is disproportionate to body growth in early childhood. Nordahl et al. (2011) demonstrated that this occurs in approximately 15% of boys with autism. While the literature suggests that brain growth normalizes at older ages, this has never been evaluated in a longitudinal study. The current study evaluated head circumference and total cerebral volume in 129 male children with autism and 49 age-matched, typically developing controls. We determined whether 3-year-old boys with brain size disproportionate to height (which we call disproportionate megalencephaly) demonstrated an abnormal trajectory of head growth from birth and whether they maintained an enlarged brain at 5 years of age. Findings were based on longitudinal, structural MRI data collected around 3, 4, and 5 years of age and head circumference data from medical records. At 3 years of age, 19 boys with autism had enlarged brains while 110 had brain sizes in the normal range. Boys with disproportionate megalencephaly had greater total cerebral, gray matter, and white matter volumes from 3-5 years compared to boys with autism and normal sized brains and typically developing boys, but no differences in body size. While head circumference did not differ between groups at birth, it was significantly greater in the disproportionate megalencephaly group by around 2 years. These data suggest that there is a subgroup of boys with autism who have brains disproportionate to body size and that this continues until at least 5 years of age. Autism Res 2016, 9: 1169-1182. © 2016 International Society for Autism Research, Wiley Periodicals, Inc

    What will my child's future hold? phenotypes of intellectual development in 2-8-year-olds with autism spectrum disorder.

    No full text
    We examined phenotypes of autism spectrum disorder (ASD) based on trajectories of intellectual development from early (ages 2-3 ½) to middle (ages 5-8) childhood in a recent clinically ascertained cohort. Participants included 102 children (82 males) initially diagnosed with ASD from the Autism Phenome Project longitudinal sample. Latent class growth analysis was used to identify distinct IQ trajectories. Baseline and developmental course differences among groups were assessed using univariate techniques and repeated measures regression models, respectively. A four class model best represented the data. Using the highest posterior probability, participants were assigned to High Challenges (25.5%), Stable Low (17.6%), Changers (35.3%), and Lesser Challenges (21.6%) groups. The High Challenges and Stable Low groups exhibited persistently low IQ, although, the High Challenges group experienced declines while the Stable Low group's scores remained more constant. Changers showed IQ improvement of > 2 standard deviations. The Lesser Challenges group had IQs in the average range at both times that were about 1 standard deviation higher at T2. In summation, 75% of the participants experienced some relative improvements in intellectual and/or other areas of functioning between ages 2 and 8 years. The Changers group demonstrated the most significant IQ change that was accompanied by adaptive communication improvement and declining externalizing symptoms. Only the Lesser Challenges group showed a significant reduction in ASD symptom severity, such that by age 8, 14% of them no longer met ADOS-2 criteria for ASD. All groups showed reductions in internalizing symptoms. Intervention history was not associated with group status. Autism Res 2018, 11: 121-132. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.Lay summaryWe examined how the IQs of children with autism spectrum disorder change between ages 2 and 8, and identified four patterns. Two groups exhibited persistently lower IQs. One group showed IQ increases of greater than 30 points with improved communicate abilities and declining disruptive behaviors. The final group had IQs in the average or better range at both time points, and 14% of them lost their diagnoses. Over half of the children experienced improved intellectual functioning between ages 2 and 8, whereas about 25% showed declines. Findings were not associated with intervention history
    corecore