1,711 research outputs found
The Influence of the Rashba spin orbit coupling on the two dimensional magnetoexcitons
Cataloged from PDF version of article.The influence of the Rashba spin-orbit coupling (RSOC) on the two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field leads to different results for the Landau quantization in different spin projections. In the Landau gauge the unidimensional wave vector describing the free motion in one in-plane direction is the same for both spin projections, whereas the numbers of Landau quantization levels are different. For an electron in an s-type conduction band they differ by one, as was established earlier by Rashba (1960 Fiz. Tverd. Tela 2 1224), whereas for heavy holes in a p-type valence band influenced by the 2D symmetry of the layer they differ by three. The shifts and the rearrangements of the 2D hole Landau quantization levels on the energy scale are much larger in comparison with the case of conduction electron Landau levels. This is due to the strong influence of the magnetic field on the RSOC parameter. At sufficiently large values of this parameter the shifts and rearrangements are comparable with the hole cyclotron energy. There are two lowest spin-split Landau levels for electrons as well as four lowest ones for holes in the case of small RSOC parameters. They give rise to eight lowest energy bands of the 2D magnetoexcitons, as well as of the band-to-band quantum transitions. It is shown that three of them are dipole-active, three are quadrupole-active and two are forbidden. The optical orientation under the influence of circularly polarized light leads to optical alignment of the magnetoexcitons with different orbital momentum projections in the direction of the external magnetic field
Phonetic analysis of speech and memory codes in beginning readers
Two experimental tasks, a speech segmentation and a short-term memory task, were presented to children who began to learn to read following either the "phonic" or the "wholeword" method. The segmentation task required the child to reverse two segments (either two phones or two syllables) in an utterance. The phonic group performed significantly better than the whole-word group in the "phonic reversal" task, but no difference appeared in the "syllable reversal" task. This indicated (1) that most children by the age of 6 years are ready to discover that speech consists of a sequence of phones and (2) that the moment at which they do it is influenced by the way they are taught to read. In the memory task, the children recalled series of visually presented items whose names either rhymed or did not. The difference in performance for the rhyming and nonrhyming series was significant in both groups. It was no greater for the phonic than for the whole-word group and was uncorrelated with the "phonic reversal" task. These results are discussed in connection with the distinction between ways of lexical access and ways of representing verbal information in short-term memory. © 1982 Psychonomic Society, Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Nonlinear equation for curved stationary flames
A nonlinear equation describing curved stationary flames with arbitrary gas
expansion , subject to the
Landau-Darrieus instability, is obtained in a closed form without an assumption
of weak nonlinearity. It is proved that in the scope of the asymptotic
expansion for the new equation gives the true solution to the
problem of stationary flame propagation with the accuracy of the sixth order in
In particular, it reproduces the stationary version of the
well-known Sivashinsky equation at the second order corresponding to the
approximation of zero vorticity production. At higher orders, the new equation
describes influence of the vorticity drift behind the flame front on the front
structure. Its asymptotic expansion is carried out explicitly, and the
resulting equation is solved analytically at the third order. For arbitrary
values of the highly nonlinear regime of fast flow burning is
investigated, for which case a large flame velocity expansion of the nonlinear
equation is proposed.Comment: 29 pages 4 figures LaTe
Effect of Electron Energy Distribution Function on Power Deposition and Plasma Density in an Inductively Coupled Discharge at Very Low Pressures
A self-consistent 1-D model was developed to study the effect of the electron
energy distribution function (EEDF) on power deposition and plasma density
profiles in a planar inductively coupled plasma (ICP) in the non-local regime
(pressure < 10 mTorr). The model consisted of three modules: (1) an electron
energy distribution function (EEDF) module to compute the non-Maxwellian EEDF,
(2) a non-local electron kinetics module to predict the non-local electron
conductivity, RF current, electric field and power deposition profiles in the
non-uniform plasma, and (3) a heavy species transport module to solve for the
ion density and velocity profiles as well as the metastable density. Results
using the non-Maxwellian EEDF model were compared with predictions using a
Maxwellian EEDF, under otherwise identical conditions. The RF electric field,
current, and power deposition profiles were different, especially at 1mTorr,
for which the electron effective mean free path was larger than the skin depth.
The plasma density predicted by the Maxwellian EEDF was up to 93% larger for
the conditions examined. Thus, the non-Maxwellian EEDF must be accounted for in
modeling ICPs at very low pressures.Comment: 19 pages submitted to Plasma Sources Sci. Techno
- …