1,962 research outputs found

    Current Development of Carbon Capture and Storage in the UK – a Non Technical Review

    Get PDF
    This paper reviewed a current situation of carbon capture and storage (CCS) development in the UK mainly within the last 10 years in general. It looked at the positive ways to implement the CCS technologies, including the geological advantages, potential sector growth, financial incentives, and the support in the policies. Current projects were brought forward together with the university and industry research. Some concerns and limitation of applying CCS technologies were discussed. To the end, the conclusion was made that the UK is in a good position to implement CCS technologies and would become a global leader in CCS development providing that the first four trials were successful

    Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

    Full text link
    We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and density-matrix renormalization-group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides new insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.Comment: 7 pages, 8 figures, comments are welcom

    An Investigation into the Energy Performance Gap between the Predicted and Measured Output of Photovoltaic Systems Using Dynamic Simulation Modelling Software – A Case Study

    Get PDF
    The use of solar energy can help reduce the CO2 emission and dependency on fossil fuels, and using Solar Photovoltaic (PV) systems to generate electricity is a popular route to validate the building energy performance in the UK. To help achieve the targets set out in the Climate Change Act, Part L of the Building Regulations 2013 stated that a building must achieve the approved minimum energy performance requirements. EDSL Tas, a dynamic modelling software, is often used by building consultant companies whose designers use the facility to simulate PV systems and integrate the energy output results into the overall energy performance of a building. There is, however, a clear performance gap between the measured and predicted energy output when using dynamic modelling software. Therefore, this paper is to use a comparative study to address this issue by using EDSL Tas software to predict PV system’s energy output and comprehensively analyse a case study at Poole Methodist Church. There are many causes for the potential deviation of results, although the most influential in relation to energy performance is the use of weather data, future climate change, adverse weather conditions and environmental factors affecting the PV array. The results indicate an 8.6% higher measured energy output from the installed PV system although the performance gap has little detrimental effect in regards to achieving Building Regulation compliance, but could lead to the unreasonable design of the PV system and inappropriate use of capital investment. Further simulation using projected future weather data from several different climate change scenarios was undertaken. 2020, 2050 and 2080 with low, medium and high emission scenarios indicated that the PV array would increase energy output by up to 5% by 2080 compared with using current weather data, indicating a rise in PV energy output in relation to increased CO₂ emissions. This is due to a projected reduction in cloud cover and increased downward shortwave radiation

    Observations on the Dynamic Evolution of Peer-to-Peer Networks

    Get PDF
    A fundamental theoretical challenge in peer-to-peer systems is proving statements about the evolution of the system while nodes are continuously joining and leaving. Because the system will operate for an infinite time, performance measures based on runtime are uninformative; instead, we must study the rate at which nodes consume resources to maintain the system state

    Detecting Majorana fermions by use of superconductor-quantum Hall liquid junctions

    Full text link
    The point contact tunnel junctions between a one-dimensional topological superconductor and single-channel quantum Hall (QH) liquids are investigated theoretically with bosonization technology and renormalization group methods. For the ν=1\nu=1 integer QH liquid, the universal low-energy tunneling transport is governed by the perfect Andreev reflection fixed point with quantized zero-bias conductance G(0)=2e2/hG(0)=2e^{2}/h, which can serve as a definitive fingerprint of the existence of a Majorana fermion. For the ν=1/m\nu =1/m Laughlin fractional QH liquids, its transport is governed by the perfect normal reflection fixed point with vanishing zero-bias conductance and bias-dependent conductance G(V)Vm2G(V) \sim V^{m-2}. Our setup is within reach of present experimental techniques.Comment: 6 pages, 1 figure, Added references,Corrected typo

    Do Diffusion Protocols Govern Cascade Growth?

    Full text link
    Large cascades can develop in online social networks as people share information with one another. Though simple reshare cascades have been studied extensively, the full range of cascading behaviors on social media is much more diverse. Here we study how diffusion protocols, or the social exchanges that enable information transmission, affect cascade growth, analogous to the way communication protocols define how information is transmitted from one point to another. Studying 98 of the largest information cascades on Facebook, we find a wide range of diffusion protocols - from cascading reshares of images, which use a simple protocol of tapping a single button for propagation, to the ALS Ice Bucket Challenge, whose diffusion protocol involved individuals creating and posting a video, and then nominating specific others to do the same. We find recurring classes of diffusion protocols, and identify two key counterbalancing factors in the construction of these protocols, with implications for a cascade's growth: the effort required to participate in the cascade, and the social cost of staying on the sidelines. Protocols requiring greater individual effort slow down a cascade's propagation, while those imposing a greater social cost of not participating increase the cascade's adoption likelihood. The predictability of transmission also varies with protocol. But regardless of mechanism, the cascades in our analysis all have a similar reproduction number (\approx 1.8), meaning that lower rates of exposure can be offset with higher per-exposure rates of adoption. Last, we show how a cascade's structure can not only differentiate these protocols, but also be modeled through branching processes. Together, these findings provide a framework for understanding how a wide variety of information cascades can achieve substantial adoption across a network.Comment: ICWSM 201

    Navigability is a Robust Property

    Full text link
    The Small World phenomenon has inspired researchers across a number of fields. A breakthrough in its understanding was made by Kleinberg who introduced Rank Based Augmentation (RBA): add to each vertex independently an arc to a random destination selected from a carefully crafted probability distribution. Kleinberg proved that RBA makes many networks navigable, i.e., it allows greedy routing to successfully deliver messages between any two vertices in a polylogarithmic number of steps. We prove that navigability is an inherent property of many random networks, arising without coordination, or even independence assumptions

    The evolution of interdisciplinarity in physics research

    Get PDF
    Science, being a social enterprise, is subject to fragmentation into groups that focus on specialized areas or topics. Often new advances occur through cross-fertilization of ideas between sub-fields that otherwise have little overlap as they study dissimilar phenomena using different techniques. Thus to explore the nature and dynamics of scientific progress one needs to consider the large-scale organization and interactions between different subject areas. Here, we study the relationships between the sub-fields of Physics using the Physics and Astronomy Classification Scheme (PACS) codes employed for self-categorization of articles published over the past 25 years (1985-2009). We observe a clear trend towards increasing interactions between the different sub-fields. The network of sub-fields also exhibits core-periphery organization, the nucleus being dominated by Condensed Matter and General Physics. However, over time Interdisciplinary Physics is steadily increasing its share in the network core, reflecting a shift in the overall trend of Physics research.Comment: Published version, 10 pages, 8 figures + Supplementary Informatio
    corecore