1,214 research outputs found
Dissociation mechanism for solid-phase epitaxy of silicon in the Si <100>/Pd2Si/Si (amorphous) system
Solid-phase epitaxial growth (SPEG) of silicon was investigated by a tracer technique using radioactive 31Si formed by neutron activation in a nuclear reactor. After depositing Pd and Si onto activated single-crystal silicon substrates, Pd2Si was formed with about equal amounts of radioactive and nonradioactive Si during heating at 400 °C for 5 min. After an 1-sec annealing stage (450-->500 °C in 1 h) this silicide layer, which moves to the top of the sample during SPEG, is etched off with aqua regia. From the absence of radioactive 31Si in the etch, it is concluded that SPEG takes place by a dissociation mechanism rather than by diffusion
Heterostructure by solid‐phase epitaxy in the Si〈111〉/Pd/Si (amorphous) system
When a thin film of Pd reacts with a 〈111〉 Si substrate, a layer of epitaxial Pd_2Si is formed. It is shown that Si can grow epitaxially on such a layer by solid‐phase reaction
Depth dependence of atomic mixing by ion beams
Ion backscattering spectrometry has been used to investigate the depth dependence of atomic mixing induced by ion beams. Samples consisting of a thin Pt (or Si) marker a few tens of angstroms thick buried at different depths in a deposited Si (or Pt) layer were bombarded with Xe+ of 300 keV at 2×10^16 cm^–2 dose and Ar+ of 150 keV at 5×10^15cm^–2 dose. Significant spreading of the marker was observed as a result of ion irradiation. The amount of spreading was measured as a function of depth of the marker, which was then compared with the deposited energy distribution. Measurements of this kind promise new insight into the nature of the interaction between ion beams and solids
Antimony doping of Si layers grown by solid-phase epitaxy
We report here that layers of Si formed by solid-phase epitaxial growth (SPEG) can be doped intentionally. The sample consists initially of an upper layer of amorphous Si (~1 µm thick), a very thin intermediate layer of Sb (nominally 5 Å), and a thin lower layer of Pd (~500 Å), all electron-gun deposited on top of a single-crystal substrate (1–10 Ω cm, p type, orientation). After a heating cycle which induces epitaxial growth, electrically active Sb atoms are incorporated into the SPEG layer, as shown by the following facts: (a) the SPEG layer forms a p-n junction against the p-type substrate, (b) the Hall effect indicates strong n-type conduction of the layer, and (c) Auger electron spectra reveal the presence of Sb in the layer
Growth mechanism for solid-phase epitaxy of Si in the Si <100>/Pd2Si/Si(amorphous) system studied by a radioactive tracer technique
A tracer technique using radioactive 31Si (T1/2=2.62 h) was used to study solid-phase epitaxial growth (SPEG) of silicon. After depositing Pd and Si onto single-crystal substrates which had been activated in a nuclear reactor, Pd2Si was formed with about equal amounts of radioactive and nonradioactive silicon during heating at 400 °C for 5 min. After a second annealing stage (450 °C-->500 °C in 1 h) the silicide layer which moves to the top of the sample during SPEG was etched off with aqua regia. From the absence of radioactive 31Si in the etchant solution it is concluded that SPEG takes place by dissociation of the Pd2Si layer at the single-crystal interface to provide free Si for epitaxial growth, while new silicide is formed at the interface with the amorphous Si. These results were confirmed by evaporating radioactive silicon onto nonactivated silicon substrates before evaporation of Pd and stable amorphous Si and by measuring the activity in the SPEG sample before and after etching off the silicide layer
Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.
The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and drug development studies
Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis.
Radioembolization with yttrium-90 microspheres offers an alternative treatment option for patients with unresectable intrahepatic cholangiocarcinoma (ICC). However, the rarity and heterogeneity of ICC makes it difficult to draw firm conclusions about treatment efficacy. Therefore, the goal of the current study is to systematically review the existing literature surrounding treatment of unresectable ICCs with yttrium-90 microspheres and provide a comprehensive review of the current experience and clinical outcome of this treatment modality. We performed a comprehensive search of electronic databases for ICC treatment and identified 12 studies with relevant data regarding radioembolization therapy with yttrium-90 microspheres. Based on pooled analysis, the overall weighted median survival was 15.5 months. Tumour response based on radiological studies demonstrated a partial response in 28% and stable disease in 54% of patients at three months. Seven patients were able to be downstaged to surgical resection. The complication profile of radioembolization is similar to that of other intra-arterial treatment modalities. Overall survival of patients with ICC after treatment with yttrium-90 microspheres is higher than historical survival rates and shows similar survival to those patients treated with systemic chemotherapy and/or trans-arterial chemoembolization therapy. Therefore, the use of yttrium-90 microspheres should be considered in the list of available treatment options for ICC. However, future randomized trials comparing systemic chemotherapy, TACE and local radiation will be required to identify the optimal treatment modality for unresectable ICC.S-S Liau is in receipt of the MRC Clinician Scientist
Fellowship. He is also funded by University of Cambridge
Parke-Davis Fellowship, Royal Society of Medicine
Ellison-Cliffe Fellowship, Dowager Countess Eleanor
Peel Fellowship, HCA International Foundation Fellowship,
European Society of Surgical Oncology Minor
Fellowship, and MRC Centenary Early Career Award.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S074879831401097X#
Efficacy of HIV/STI behavioral interventions for heterosexual African American men in the United States: a meta-analysis
This meta-analysis estimates the overall efficacy of HIV prevention interventions to reduce HIV sexual risk behaviors and sexually transmitted infections (STIs) among heterosexual African American men. A comprehensive search of the literature published during 1988–2008 yielded 44 relevant studies. Interventions significantly reduced HIV sexual risk behaviors and STIs. The stratified analysis for HIV sexual risk behaviors indicated that interventions were efficacious for studies specifically targeting African American men and men with incarceration history. In addition, interventions that had provision/referral of medical services, male facilitators, shorter follow-up periods, or emphasized the importance of protecting family and significant others were associated with reductions in HIV sexual risk behaviors. Meta-regression analyses indicated that the most robust intervention component is the provision/referral of medical services. Findings indicate that HIV interventions for heterosexual African American men might be more efficacious if they incorporated a range of health care services rather than HIV/STI-related services alone
A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans
BACKGROUND: Mitochondrial DNA (mtDNA) mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans). Our study investigates the phenotypic effects of this 3 kbp deletion. RESULTS: The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. CONCLUSION: Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms
Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment
Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism
for A STable experiment II (BEAST II) project is particularly designed to
measure the beam backgrounds around the interaction point of the SuperKEKB
collider for the Belle II experiment. We develop a system using bismuth
germanium oxide (BGO) crystals with optical fibers connecting to a multianode
photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA)
embedded readout board for monitoring the real-time beam backgrounds in BEAST
II. The overall radiation sensitivity of this system is estimated to be
Gy/ADU (analog-to-digital unit) with the standard
10 m fibers for transmission and the MAPMT operating at 700 V. Our -ray
irradiation study of the BGO system shows that the exposure of BGO crystals to
Co -ray doses of 1 krad has led to immediate light output
reductions of 25--40%, and the light outputs further drop by 30--45% after the
crystals receive doses of 2--4 krad. Our findings agree with those of the
previous studies on the radiation hard (RH) BGO crystals grown by the low
thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the
BGO system is also consistent with the simulation, and is estimated to be about
1.18 times the equivalent dose. These results prove that the BGO system is able
to monitor the background dose rate in real time under extreme high radiation
conditions. This study concludes that the BGO system is reliable for the beam
background study in BEAST II
- …