26,380 research outputs found

    InGaAs implant-free quantum-well MOSFETs: performance evaluation using 3D Monte Carlo simulation

    Get PDF
    In this paper we use numerical simulations to evaluate the performance of III-V Implant-Free Quantum-Well (IFQW) MOSFET devices that offer simultaneously high channel mobility, high drive current and excellent electrostatic integrity. Using 3D Monte Carlo simulations we show that to fully understand the performance of this device architecture, Fermi-Dirac statistics and quantum-corrections must be considered to account for the impact of low density-of-states and quantum confinement in the channel layer respectively

    SuperBIB: A set of superior programs for the Unix bibliographic system

    Get PDF

    Metal-Insulator Transition of the LaAlO3-SrTiO3 Interface Electron System

    Full text link
    We report on a metal-insulator transition in the LaAlO3-SrTiO3 interface electron system, of which the carrier density is tuned by an electric gate field. Below a critical carrier density n_c ranging from 0.5-1.5 * 10^13/cm^2, LaAlO3-SrTiO3 interfaces, forming drain-source channels in field-effect devices are non-ohmic. The differential resistance at zero channel bias diverges within a 2% variation of the carrier density. Above n_c, the conductivity of the ohmic channels has a metal-like temperature dependence, while below n_c conductivity sets in only above a threshold electric field. For a given thickness of the LaAlO3 layer, the conductivity follows a sigma_0 ~(n - n_c)/n_c characteristic. The metal-insulator transition is found to be distinct from that of the semiconductor 2D systems.Comment: 4 figure

    The influence of structural defects on intra-granular critical currents of bulk MgB2

    Full text link
    Bulk MgB2 samples were prepared under different synthesis conditions and analyzed by scanning and transmission electron microscopy. The critical current densities were determined from the magnetization versus magnetic field curves of bulk and powder-dispersed-in-epoxy samples. Results show that through a slow cooling process, the oxygen dissolved in bulk MgB2 at high synthesis temperatures can segregate and form nanometer-sized coherent precipitates of Mg(B,O)2 in the MgB2 matrix. Magnetization measurements indicate that these precipitates act as effective flux pinning centers and therefore significantly improve the intra-grain critical current density and its field dependence.Comment: 4 pages, 4 figures, to be published in IEE Transactions in Applied Superconductivit

    Microwave performance of high-density bulk MgB2

    Full text link
    We have performed microwave measurements on superconducting hot-isostatically- pressed (HIPed) bulk MgB2 using a parallel-plate resonator technique. The high density and strength of the HIPed material allowed preparation of samples with mirror-like surfaces for microwave measurements. The microwave surface resistance decreased by about 40% at 20 K when the root-mean-square surface roughness was reduced from 220 nm to 110 nm through surface-polishing and ion-milling. The surface resistance was independent of surface microwave magnetic field at least up to 4 Oe and below 30 K. We attribute this behavior, and the overall low surface resistance (~0.8 mOhms at 10 GHz and 20 K), to the high density of our samples and the absence of weak links between grains

    Electric Flux Tube in Magnetic Plasma

    Full text link
    In this paper we study a methodical problem related to the magnetic scenario recently suggested and initiated by the authors \cite{Liao_ES_mono} to understand the strongly coupled quark-gluon plasma (sQGP): the electric flux tube in monopole plasma. A macroscopic approach, interpolating between Bose condensed (dual superconductor) and classical gas medium is developed first. Then we work out a microscopic approach based on detailed quantum mechanical calculation of the monopole scattering on electric flux tube, evaluating induced currents for all partial waves. As expected, the flux tube looses its stability when particles can penetrate it: we make this condition precise by calculating the critical value for the product of the flux tube size times the particle momentum, above which the flux tube dissolves. Lattice static potentials indicate that flux tubes seem to dissolve at T>Tdissolution≈1.3TcT>T_{dissolution} \approx 1.3 T_c. Using our criterion one gets an estimate of the magnetic density n≈4.4∼6.6fm−3n\approx 4.4 \sim 6.6 fm^{-3} at this temperature.Comment: New version with new referecences added and minor changes. 15 pages, 8 figure
    • …
    corecore