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Abstract

Score-driven models provide a solution to the problem of modeling
time series when the observations are subject to censoring and lo-
cation and/or scale may change over time. The method applies to
generalized-t and EGB2 distributions, as well as to the normal distri-
bution. A set of Monte Carlo experiments show that the score-driven
model provides good forecasts even when the true model is parameter-
driven. The viability of the new models is illustrated by fitting them
to data on Chinese stock returns.
KEYWORDS:Censored distributions; dynamic conditional score mo-
del; EGARCH models; logistic distribution; generalized t distribution.
JEL classification: C22;C24.

1 Introduction
The Tobit regression model is widely when the dependent variable is subject
to censoring; see, for example, Amemiya (1985, ch 10). Here we consider cen-
soring in univariate time series models. A number of researchers, beginning
with Zeger and Brookmeyer (1986), have proposed dynamic Tobit models
and discussed ways of estimating them. Nearly all these models assume the
underlying (uncensored) observations to be Gaussian. Furthermore the dy-
namics tend to be of the autoregressive or autoregressive-moving average
(ARMA) form, as in Park et al (2007) and Wang and Chan (2018), although
a recent paper by Allik et al (2015) generalizes to state space models.
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The class of dynamic Tobit models proposed here have location given by
a filter that depends on the conditional score. Such models, known as Dy-
namic Conditional Score (DCS) or Generalized Autoregressive Score (GAS)
models, have already proved to be highly effective in a number of situations;
see, Harvey (2013), Creal et al (2011) and the papers listed in the website
http://www.gasmodel.com. In the present context the score has the im-
portant feature of automatically solving the problem of how to weight the
censored observations. Furthermore the properties of the score mean that the
dynamics are driven by a variable which is a martingale difference. Expla-
natory variables can be included in the models, making static Tobit models
a special case.

In the classic Tobit regression model, where location is a linear function of
explanatory variables, the uncensored distribution is assumed to be normal.
However, whereas for uncensored data Gaussianity leads to least squares in
regression and a linear model in time series (and hence the Kalman filter for
unobserved components), it no longer yields simple estimation procedures
once censoring is introduced. Hence there is no computational disadvantage
to adopting other, more flexible, distributions. It is in this spirit that Lewis
and McDonald (2014) propose the use of generalized-t and exponential gene-
ralized beta of the second kind (EGB2) distributions for censored regression.
These distributions may be similarly used as the basis for the dynamic Tobit
procedures. The logistic distribution, which is a special case of EGB2, is
similar in shape to the normal but when used in a censored DCS model it
leads to a particularly simple filter.

Censored score-driven models can also be used when scale is dynamic.
For the reasons given in Harvey (2013, ch4) and Harvey and Lange (2018),
the preferred specifications are of the exponential generalized autoregressive
heteroscdasticity (EGARCH) form.

Score-driven models are observation-driven, rather than parameter-driven.
Hence estimation can be carried out relatively simply by maximizing a likeli-
hood function. By contrast, parameter-driven models tend to require compu-
tationally intensive techniques, such as Markov chain monte Carlo (MCMC)
or particle filters; see the comments in Allik et al (2015). A recent paper
by Koopman et al (2016) shows that observation-driven models can provide
a good approximation to parameter-driven models, but the converse is not
generally true. We find the same here.

The plan of the paper is as follows. Section 2 sets out the basic DCS
model for censored observations and Section 3 gives the expressions for the
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conditional scores for generalized t, EGB2, Gaussian and generalized beta
of the second kind (GB2) distributions. Specification and prediction are
discussed in Section 4, while in Section 5 a small Monte Carlo study compares
the performance of DCS models with the corresponding parameter-driven
models. The penultimate section fits DCS models with time-varying scale to
censored Chinese stock prices.

2 Censored observations
Let x be a variable with location µ, scale ϕ = exp(λ) and PDF fx. The
observations subject to censoring are defined as

yt =


xt, cL < xt < cU ,
cL, xt ≤ cL,
cU , xt ≥ cU

, t = 1, ..., T. (1)

For generality we have assumed the possibility of censoring in both tails. The
lower and upper bounds, cL and cU , are taken to be known. The probabilities
of getting censored observations are Pr(yt = cL) = Fx(cL) and Pr(yt = cL) =
1− Fx(cU), where Fx is the CDF of xt.

Let IL be an indicator that is one when y = cL and zero when y > cL.
Similarly let IU be one when y = cU and zero when y < cU . The distribution of
yt, that is f(yt; cL, cU), is a discrete-continuous mixture and the log-likelihood
for the t− th observation is

ln f(yt; cL, cU) = IL lnFx(cL)+(1−IL−IU) ln fx(yt)+IU ln(1−Fx(cU)). (2)

The score with respect to µ is then
∂ ln f(yt)

∂µ
= IL

∂ lnFx(cL)
∂µ

+ (1− IL − IU)∂ ln fx(yt)
∂µ

+ IU
∂ ln(1− Fx(cU))

∂µ
(3)

= IL
1

Fx(cL)
∂Fx(cL)
∂µ

+ (1− IL − IU)∂ ln fx(yt)
∂µ

− IU
1

1− Fx(cU)
∂Fx(cU)
∂µ

.

The score for λ takes a similar form.
The derivatives of the CDF can be found by letting εt = (xt − µ)e−λ.

Then ∂Fx(cL)/∂µ = exp(λ)∂Fε(cL)/∂εt × ∂εt/∂µ = −fx. For the scale
∂Fx(cL)/∂λ = −fx(cL − µ) so
∂ ln f(yt)

∂λ
= −IL

fx(cL − µ)
Fx(cL) + (1− IL − IU)∂ ln fx(yt)

∂λ
+ IU

fx(cU − µ)
1− Fx(cU) .
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The basic idea of the censored DCS Tobit model is to construct a signal-
noise model in which location and scale are filters driven by their respective
scores. Thus

xt = µt|t−1 + εt exp(λt|t−1), t = 1, ...., T. (4)

The distribution of yt is defined conditional on past values of the observations
which appear through the conditional location, µt|t−1, and/or the logarithm
of conditional scale, λt|t−1. Alternatively the random variables denoted εt can
be regarded as independent drawings from a standardized distribution. The
stationary first-order model for location is

µt+1|t = (1− φ)ω + φµt|t−1 + κut, |φ| < 1, (5)

where ut is the score with respect to location and ω, φ and κ are parameters.
A similar equation can be formulated for λt+1|t.

3 Distributions and scores
The generalized t and EGB2 distributions are both based on the GB2 distri-
bution, which has PDF

fx(x;λ, υ, ξ, ς) = υ(xe−λ)υξ−1

ϕB(ξ, ς) [(xe−λ)υ + 1]ξ+ς
, x ≥ 0, ϕ, υ, ξ, ς > 0,

(6)
where exp(λ) is the scale, υ, ξ and ς are shape parameters and B(ξ, ς) is the
beta function. The CDF of xt, F (xt; υ, ξ, ς), is a (regularized) incomplete
beta function,

β(zt; ξ, ς) = B(zt; ξ, ς)/B(ξ, ς),

where B(zt; ξ, ς) is the incomplete beta function and zt = (xte−λ)υ; see Klei-
ber and Kotz (2003, p 184). The incomplete beta function can be written
in closed form when ς and/or ξ is one. The generalized gamma distribution
can be obtained from the GB2 by letting the tail index go to infinity. The
CDF of xt, is then an incomplete gamma function.

We now set out the likelihood functions and scores for censored observa-
tions from generalized t and EGB2 distributions. The Gaussian distribution
is a special case of both. Finally we return to the GB2 and discuss censored
location/scale models for positive observations.
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3.1 Generalized t
The generalized t is obtained from GB2 by setting υξ = 1 and replacing x
by |x− µ| . Our preferred parameterization, as in Harvey and Lange (2017),
replaces one of the shape parameters, ς, by the tail index, η = ςυ, and
redefines scale by replacing ϕ by ϕη1/υ. The t distribution is given by setting
υ = 2 in which case the tail index, η, becomes the degrees of freedom. The
robustness properties of the score function - or influence function - of location
are highlighted by McDonald and Newey (1988). Provided η is finite, it is
redescending in that it approaches zero as x moves away from µ. The score
function for scale has corresponding robustness features in that it is bounded.
The normal distribution is obtained by letting η →∞.

The PDF for the generalized t distribution is

fx(x;µ, λ, υ, η) = υ

2eλη1/υ
1

B(1/υ, η/υ)

(
1 + 1

η

∣∣∣∣x− µeλ

∣∣∣∣υ
)−(η+1)/υ

, −∞ < xt <∞,

with CDF
Fx(x) = [(1 + sgn(x− µ)β(z; 1/υ, η/υ)]/2,

where z = (|x− µ| e−λ)υ/η. Thus, assuming cL < µ, Pr(yt = cL) = Fx(cL) =
[(1 − β(zL; 1/υ, η/υ)]/2 and, assuming cU > µ, Pr(yt = cU) = Fx(cU) =
[1 + β(zU ; 1/υ, η/υ)]/2. Hence 1− Fx(cU) = [(1− β(zU ; 1/υ, η/υ)]/2.

The score for location in the censored distribution is
∂ ln f(yt)

∂µ
= −IL

υ

eλη1/υ
(1− bL)(η+1)/υ

B(1/υ, η/υ)[1− β(zL; 1/υ, η/υ)] (7)

+IU
υ

eλη1/υ
(1− bU)(η+1)/υ

B(1/υ, η/υ)[1− β(zU ; 1/υ, η/υ)]

+(1− IL − IU)
[
η + 1
ηeλ

(1− bt)(|yt − µ| e−λ)υ−1sgn(yt − µ)
]
,

where bt is defined as

bt = (|yt − µ| e−λ)υ/η
(|yt − µ| e−λ)υ/η + 1 = zt

zt + 1
and bL and bU have yt set to cL and cU respectively.
Remark 1. For the t distribution, υ = 2 so (|yt − µ| e−λ)υ−1sgn(yt − µ) =
(yt−µ)e−λ and the formula for the continuous part of the score becomes much
simpler.
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For scale the score is

∂ ln f(yt)
∂λ

= IL
υb

1/υ
L (1− bL)η/υ

B(1/υ, η/υ)[1− β(zL; 1/υ, η/υ)] (8)

+IU
υb

1/υ
U (1− bU)η/υ

B(1/υ, η/υ)[1− β(zU ; 1/υ, η/υ)] + (1− IL − IU)[(η + 1)bt − 1].

The generalized Student-t distribution may be extended to handle skew-
ness and asymmetry as in Harvey and Lange (2017).

3.2 EGB2
The EGB2 distribution is formed by taking the logarithm of a GB2; see
McDonald and Xu (1995) and Caivano and Harvey (2014). The PDF is

fx(x;µ, λ, ξ, ς) = e−λ exp{ξ(x− µ)e−λ}
B(ξ, ς)(1 + exp{(x− µ)e−λ})ξ+ς , −∞ < xt <∞, (9)

where the inverse of the υ parameter in the GB2 distribution has now been
repalced by a scale parameter, denoted as ϕ = exp(λ). The distribution is
light-tailed and all moments exist. It is positively (negatively) skewed when
ξ > ς (ξ < ς) and its kurtosis decreases as ξ and ς increase. There is
excess kurtosis for finite ξ and/or ς; the maximum kurtosis is nine, but in
the symmetric case it is six, obtained when ξ = ς = 0, which is the Laplace
distribution. The normal distribution is obtained by letting ς = ξ →∞.

Defining zt = exp((yt − µ)e−λ) gives

∂ ln f(yt)
∂µ

= −IL
ξbξL(1− bL)ς

eλB(ξ, ς)β(zL; ξ, ς) + IU
ξbξU(1− bU)ς

eλB(ξ, ς)[1− β(zU ; ξ, ς)](10)

+(1− IL − IU)(ξ + ς)bt − ξ
eλ

,

where bt = zt/(1 + zt).
For scale,

∂F (yt)
∂λ

= −IL
ξbξL(1− bL)ς

B(ξ, ς)β(zL; ξ, ς)εt + IU
ξbξU(1− bU)ς

B(ξ, ς)[1− β(zU ; ξ, ς)]εt

+(1− IL − IU) [(ξ + ς)εtbt − ξεt − 1] , (11)

where εt = (yt − µ)e−λ.

6



The logistic distribution has ξ = ς = 1. Its shape is close to that of the
normal but it has heavier tails with an excess kurtosis of 1.2. Whereas the
normal leads to linear estimators for uncensored models, it is much more
difficult to handle when there is censoring. The fact that the CDF of a
logistic distribution has a simple closed form makes it a more natural choice.
The formulae above simplify because β(zt; 1, 1) = bt and B(1, 1) = 1. The
score for µ is

∂ ln f(yt)
∂µ

= −IL
e−λ

1 + zL
+ IU

e−λzU
1 + zU

+(1− IL − IU)e−λ
[ 2zt
1 + zt

− 1
]
. (12)

It may be convenient to multiply by exp(λ) as it is only a scaling factor. For
scale

∂ ln f(yt)
∂λ

= −IL
(cL − µ)e−λ

1 + zL
+ IU

(cU − µ)e−λzU
1 + zU

+(1− IL − IU)
[
yt − µ
eλ

2zt − 1
1 + zt

− 1
]
. (13)

3.3 Gaussian distribution
The normal distribution is a special limiting case of both generalized t and
EGB2. However, proceeding directly gives

∂ ln f(yt)
∂µ

= −IL
fx(cL)
Fx(cL) + IU

fx(cU)
1− Fx(cU) + (1− IL − IU)yt − µ

e2λ (14)

and

∂ ln f(yt)
∂λ

= −IL
fx(cL)
Fx(cL)(cL − µ) + IU

fx(cU)
1− Fx(cU)(cU − µ) (15)

+(1− IL − IU)
[

(yt − µ)2

e2λ − 1
]
,

where εt = (yt − µ)/eλ. The CDF is Fx(c) = (1 + sgn(εc)γ(ε2
c/2; 1/2))/2,

where γ(.; .) is the regularized incomplete gamma function; see Abramowitz
and Stegun (1964, p 934).
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3.4 Location/scale models
Location/scale models are defined for non-negative variables. When the dis-
tribution is GB2, the technical details are similar to those of the EGB2; the
location/scale, λt|t−1, now plays a similar role to µt|t−1 in the EGB2 while
υ = exp(−λ). The score is

∂ ln f(yt;λ, υ, ξ, ς)
∂λ

= −IL
ξbξL(1− bL)ς

B(ξ, ς)β(zL; ξ, ς) + IU
υξbξU(1− bU)ς

B(ξ, ς)[1− β(zU ; ξ, ς)]
+(1− IL − IU)υ[(ξ + ς)bt − ξ],

where zt = (yte−λ)υ and bt = zt/(1 + zt). There is some simplification for the
Burr distribution, which has ξ = 1 and β(z; 1, ς) = 1− (1 + z)−ς .

The generalized gamma (GG) distribution is

f(x;λ, γ, υ) = υ

eλΓ(γ)

(
x

eλ

)υγ−1
exp

(
−(xe−λ)υ

)
, 0 ≤ x <∞,

with γ, υ > 0 and −∞ < λ < ∞. The gamma distribution sets υ = 1,
whereas the Weibull has γ = 1. The exponential distribution has υ = γ = 1.
The CDF of the GG is the regularized incomplete gamma function, γ(z; γ).
The score for the censored GG distribution is

∂ ln f(yt)
∂λ

= −IL
υzγL exp(−zL)
Γ(γ)γ(zL; γ) + IU

υzγU exp(−zU)
Γ(γ)(1− γ(zU ; γ))

+(1− IL − IU)υ(zt − 1).

where zt = (yte−λ)υ. The score for the Weibull distribution simplifies because
Fx = γ(z; 1) = 1− exp(−z) and so

∂ ln f(yt)
∂λ

= −IL
υzL exp(−zL)
1− exp(−zL) + IUυzU + (1− IL − IU)υ(zt − 1).

4 Specification and prediction for DCS mo-
dels

The censored DCS model is set up as in (4), with the appropriate score
obtained from Section 2. The first-order dynamics can be extended by adding
lags of µt|t−1 and/or ut; this is the QARMA model described in Harvey (2013,
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p 63). Other components, including non-stationary components, such as
trends and seasonals, can be included. Explanatory variables, zt, can also be
added so

xt = µt|t−1 + z′tβ + εt exp(λt|t−1), t = 1, ...., T. (16)

with µt|t−1 as in (5) and

λt+1|t = (1− φλ)ωλ + φλλt|t−1 + κλut, |φ| < 1. (17)

The static Tobit model is then a special case.

Remark 2. The use of the DCS filter for location in a Gaussian model is
closely related to the approach proposed by Zeger and Brookmeyer (1986). By
a standard result for the censored (truncated) normal

E(x | x ≤ cL) = µ− fx(cL)
Fx(cL) (18)

Hence
− fx(cL)
Fx(cL) = E(x | x ≤ c)− µ,

which is the score in (14) when yt = cL. When µ changes over time, it is
possible to set up an iterative procedure for an autoregressive model where µ
depends on lagged values of xt based on simply minimizing the sum of squa-
res with lagged censored observations replaced by the conditional expectations
E(xt | xt ≤ cL; xt−1, xt−2, ..); compare Zeger and Brookmeyer (1986, p 726).
Alternatively the (pseudo) likelihood can be maximized directly. Setting κ = φ
in the first-order dynamic score equation, (5), and taking ω there to be zero,
gives

µt+1|t = φy†t ,

where y†t = E(xt | xt ≤ c;xt−1) when yt = cL and y†t = yt otherwise. In other
words, yt = φyt−1 + eλεt or yt = φE(xt−1 | xt−1 ≤ cL).

Preliminary tests for time-variation can be carried out before a model is
fitted. To be specific, a test for serial correlation can be based on the score
for the parameter of interest after fitting a static censored (regression) model.
Such tests are Lagrange multiplier (LM) tests; see Harvey (2013, section 2.5).
Other things being equal, the choice of a logistic distribution is an attractive
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option; see Lewis and McDonald (2014). After a model has been fitted, the
scores can again be used as a diagnostic, as in Harvey and Thiele (2016).

The one-step ahead predictive distribution gives the probability of a cen-
sored observation. For example the probability of hitting the lower bound
at time t with a tη-distribution is Fx(cL) = [(1 − β(zL; 1/2, η/2)]/2, where
zL = (cL − µt|t−1)2e−2λt|t−1/η.

The conditional mean for xT+1 in (16), assuming the distribution of εt is
symmetric, is

E(xT+1 | YT ) = µT+1|T + z′T+1β.

The prediction for the mean of the censored variable, yt, is different, but can
be calculated if needed.

Conditional quantiles can be obtained from the full predictive distribu-
tion. The τ − th conditional quantile is defined as Pr(yT+1 ≥ qτ | YT ). Hence
qτ = F−1

x (τ), where F−1
x (τ) is the quantile function. The inverse regularized

incomplete beta and ganna functions are to be found in Abramowitz and
Stegun (1964, p 944-5).

Multi-step forecasts of the l − step ahead distribution can be made by
simulation. Values of µT+`|T and λT+`|T are obtained by simulating beta
variates, and hence the score, ` times. A value of xT+` is then simulated,
again from a beta variate (which converts into a generalized t or EGB2). For
Gaussian and GG distributions gamma variables are simulated.

5 Parameter-driven models
It could be argued that a parameter-driven unobserved components models
is more plausible than the DCS model. The basic UC model with constant
scale is

xt = µt + εt exp(λ), t = 1, ...., T, (19)

with
µt+1 = (1− φ)µ+ φµt + ηt, |φ| < 1, (20)

where ηt is IID normal with mean zero and variance σ2
η and µ is the un-

conditional mean of µt. Throughout this article we assume ηt and εt are
independent. Without the censoring the model could be handled by the Kal-
man filter when εt is Gaussian. With censoring, or indeed with non-Gaussian
disturbances, it becomes a nonlinear state space model and estimation must
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be carried out by a computer intensive method such as MCMC, particle fil-
tering or simulated EM1; see, for example, Durbin and Koopman (2012). A
simpler (approximate) approach is described in Allik et al (2015).

The DCS model can be regarded as an approximation to (19) in much
the same way as the pseudo-likelihood approach of Zeger and Brookmeyer
(1986) is an approximation to the likelihood for a model in which xt is an AR
process. This raises the question of how well the DCS model performs when
the true data generating process (DGP) is the UC model. To answer this
question, we carried out a set of Monte Carlo experiments. In each simula-
tion, we generated 5000 observations and used the first 2500 observations for
estimation. One-step-ahead predictions were then compute for the remaining
2500 out-of-sample observations. This procedure was repeated 1000 times,
and hence we have 1000 estimates for each parameter, and 2500× 1000 fore-
casts. The DCS Tobit model was estimated by ML, as the likelihood function
of the model is available in closed form, whereas the state-space models was
estimated by using the numerically accelerated importance sampling (NAIS)
method of Koopman et al. (2016), which is a newly proposed efficient met-
hod for estimating the non-linear and non-Gaussian state-space model. We
adjust the original NAIS method to accommodate censored data; the detailed
procedure is set out in an online Appendix.

Having compared the performance of the DCS model for a UC DGP, we
reversed the experiment and estimated the UC model for a DCS DGP. The
details are as follows.

Experiment 1: Constant Volatility (CV).
The model is (19) and (20). The constant µ is set to zero, as it is in all
subsequent cases. We used a standard normal and a Student t-distribution
with four degrees of freedom for εt, and generated ηt from a standard normal
distribution. The threshold c was chosen so that the probability of xt ≤ c =
0.05 or 0.25. To consider both low and high persistent data processes, we set
φ to be either 0.5 or 0.9. Lastly, we set λ to be zero, so the signal-to-noise
ratio is one. When data were generated from the DCS model, we set κ = 0.5.

Experiment 2: Stochastic Volatility (SV) Model
In the second set of experiments, the location is still dynamic, with the same
parameters as before, but now the scale in (19) follows a stochastic volatility

1Lee (1999) proposes estimating a dynamic Tobit model with autoregressive disturban-
ces and GARCH effects by simulated ML.
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(SV) process as well, that is

λt+1 = (1− φλ)ω + φλλt + ηλt , |φλ| < 1,

where ηλt is standard normal. In the DCS scale model, κλ = 0.1.
Panel A of Table 1 presents the results for the state-space DGPs. There

are three noteworthy findings. First, the differences in forecasting accuracy
between the state space models and the corresponding DCS Tobit models are
small and are smaller for the more persistent observations. The relative MSE
of the DCS Tobit model ranges from 1.023 to 1.038 when φ = 0.9 and from
1.019 to 1.028 when φ = 0.5. Second, the differences in forecasting accuracy
between the state space models and the DCS models are smaller when the
true DGP has a t−distribution. Third, both models perform better when
there is no stochastic volatility.

Panel B of Table 1 presents the results when the data are generated by
the DCS Tobit model. The main conclusion is that the state space model is
far worse thatn the DCS model. This finding is consistent with the results
reported by Koopman et al (2016) for other score-driven models.

Finally we compare the relative performance of the standard DCS model,
in which censored observations are taken at face value, and the DCS Tobit
model. The Tobit model is always better, irrespective of whether the DGP is
a state space model or the DCS. However, the gains are bigger when the true
model is the state space model. Even though the gains are not large when the
censored DCS is the true model, it is reassuring to know that the censored
DCS model works well. It is worth re-iterating that the censored model also
predicts the probability of censoring, so there are reasons for using it above
and beyond simply predicting the next observation.

6 Application to the Chinese stock market
Daily price limit rules are widely used by stock markets across the globe,
and these rules are particularly popular in emerging markets with a large
fraction of inexperienced investors. China’s equity market, which is the se-
cond largest in the world by capitalization, imposes daily price limits of 10%
on regular stocks and 5% on special treatment (ST) stocks. A recent paper
by Chen et al (2018) studies the impact of the price limit rule on destructive
trading behavior in China. Here, we focus on modeling Chinese stock return
dynamics to illustrate our DCS Tobit model.
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Table 1: Forecasting results from Monte Carlo study (Relative MSEs). This
table provides one-step-ahead forecasting results for time-varying location
(and scale) parameters. Panel A and B present respectively the results when
the state space and DCS Tobit model are used as DGPs. We report the
forecasting MSEs relative to those of the DGP model with estimated para-
meters.

I: The Probability of censored data is 0.05 (c = 0.05) II: The Probability of censored data is 0.25 (c = 0.25)
Type Distribution State Space DCS Tobit DCS State Space DCS Tobit DCS

Panel A: State space model as DGP
High persistence (φ = 0.9)

True Estimated Estimated Estimated True Estimated Estimated Estimated

CV model
normal 0.987 1.000 1.016 1.067 0.985 1.000 1.021 1.134

t(4) 0.912 1.000 1.015 1.065 0.987 1.000 1.020 1.127
t (normal) 0.981 1.000 1.019 1.068 0.980 1.000 1.024 1.145

SV model
normal 0.974 1.000 1.020 1.071 0.972 1.000 1.025 1.139

t(4) 0.977 1.000 1.019 1.069 0.967 1.000 1.023 1.135
t (normal) 0.966 1.000 1.023 1.074 0.965 1.000 1.028 1.152

Low persistence (φ = 0.5)
True Estimated Estimated Estimated True Estimated Estimated Estimated

CV model
normal 0.989 1.000 1.010 1.056 0.990 1.000 1.029 1.115

t(4) 0.990 1.000 1.012 1.054 0.991 1.000 1.023 1.117
t (normal) 0.987 1.000 1.015 1.058 0.985 1.000 1.028 1.120

SV model
normal 0.978 1.000 1.017 1.060 0.980 1.000 1.034 1.215

t(4) 0.971 1.000 1.014 1.058 0.973 1.000 1.030 1.206
t (normal) 0.965 1.000 1.020 1.063 0.969 1.000 1.038 1.220

Panel B: DCS Tobit model as DGP
High persistence (φ = 0.9)

True Estimated Estimated Estimated True Estimated Estimated Estimated

CV model
normal 0.994 1.567 1.000 1.024 0.992 1.643 1.000 1.034

t(4) 0.996 1.763 1.000 1.037 0.995 1.899 1.000 1.047
t (normal) 0.993 1.854 1.000 1.037 0.991 1.902 1.000 1.047

SV model
normal 0.995 1.989 1.000 1.020 0.993 1.931 1.000 1.030

t(4) 0.995 2.010 1.000 1.032 0.992 2.013 1.000 1.042
t (normal) 0.996 2.014 1.000 1.039 0.993 2.109 1.000 1.049

Low persistence (φ = 0.5)
True Estimated Estimated Estimated True Estimated Estimated Estimated

CV model
normal 0.997 1.781 1.000 1.015 0.986 1.853 1.000 1.021

t(4) 0.998 1.833 1.000 1.025 0.989 1.902 1.000 1.029
t (normal) 0.996 1.910 1.000 1.027 0.985 1.945 1.000 1.032

SV model
normal 0.998 1.945 1.000 1.019 0.988 2.010 1.000 1.025

t(4) 0.997 1.977 1.000 1.029 0.990 2.113 1.000 1.030
t (normal) 0.998 2.012 1.000 1.032 0.992 2.195 1.000 1.034
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Table 2: Summary statistics for the three Chinese stock returns

Baoshan Iron & Steel Hua Xia Bank Inner Mongolia Baotou Steel Union
Mean 0.002 0.002 0.001
Std 0.026 0.023 0.022
Skewness 0.595 0.388 0.434
Kurtosis 7.661 6.471 7.137
Percentage of price limit hitting(%) 4.060 3.227 5.098

6.1 Data
The data (from the CSMAR database) consist of daily prices of three A-share
stocks from the Shanghai Stock Exchange, namely Baoshan Iron & Steel, Hua
Xia Bank and Inner Mongolia Baotou Steel Union. The sample period is a
four-year window from Dec 2008 to Jan 2013 (around 1000 trading days),
including around 4% of trading days when the stock price hits the limit.
Table 2 gives summary statistics; note that there is excess kurtosis despite
the censoring. Figure 1 displays the histogram of the returns Inner Mongolia
Baotou Steel Union.

6.2 Model Specification
We specify the dynamics of scale for the three Chinese stock returns using
a number of DCS models with Gaussian, logistic and student t conditional
distributions. The conditional mean in (4) is assumed to be constant. We
first fit the time-varying volatility model (17) and then generalize so as to
have two components for volatility with leverage effects, as in Harvey and
Lange (2018), that is

λt|t−1 = ω + λ1,t|t−1 + λ2,t|t−1,

λi,t+1|t = φλ,i λi,t|t−1 + κλ,i ut + κ∗i sgn(−εt) (ut + 1), i = 1, 2.

Other features of the data, such as skewness, could be accommodated by fit-
ting more general distributions such as the skewed, asymmetric generalized-t
described in Harvey and Lange (2018).

6.3 Empirical Findings
Table 3 reports the estimation results of the standard and censored DCS
models for the three Chinese stocks. The estimated parameters turn out
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Figure 1: Empirical Distribution of Inner Mongolia Baotou Steel Union stock
returns.
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to be similar to the ones found by Harvey and Lange (2018) for US and
Japanese stock indices. The two component models always outperform the
corresponding one component models and the leverage effect is much stronger
in the short run. Overall, the t-distribution gives the best fit, but the logistic
is not far behind. It should be borne in mind that the t-distribution requires a
shape parameter to be estimated, whereas the logistic does not. Furthermore
the logistic score takes a relatively simple form.

Figure 2 shows the ACF plot of scale scores from the best model, the two-
component Student t, for a typical stock. There is no indication of significant
serial correlation in the scores and other diagnostics were satisfactory.

The most important result in the present context is that in all cases the
censored DCS models achieve higher likelihood value than the corresponding
basic DCS models.

Figure 3 shows the estimated dynamic probability of hitting the stock
price limit for the Inner Mongolia Baotou Steel Union stock returns during
the whole sample period. The probability is computed for the best fitting
model, namely the censored DCS two component model with Student t dis-
tribution. The average of the estimated dynamic probabilities is very close
to the unconditional probability of hitting the price limit calculated from
the original returns. The estimated volatility for the censored DCS model is
shown in Figure 4. There are some differences as compared with the standard
DCS model, but no general conclusions can be drawn.

7 Conclusion
Score-driven models provide a relatively straightforward solution to the pro-
blem of modeling time series when the observations are subject to censoring
and location and/or scale may change over time. The method applies to
generalized-t and EGB2 distributions, as well as to the normal distribution.
A particularly appealing model is obtained for the logistic distribution.

A set of Monte Carlo experiments show that the score-driven model pro-
vides good forecasts even when the true model is parameter-driven. The
converse appears not to be the case. When dynamic censored models are
fitted to data on Chinese stock returns, they give a better fit than models
that do not take account of censoring. Furthermore they yield an estimated
of the probability that the next observations will be subject to censoring.
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Table 3: In-sample Estimation Results. This table reports in-sample estima-
tion results using the 1000 return observations for the three Chinese stocks.

Baoshan Iron & Steel Hua Xia Bank Inner Mongolia Baotou Steel Union
Panel A: SV model with Gaussian Distribution

DCS Censored DCS DCS Censored DCS DCS Censored DCS
DCS Censored DCS DCS Censored DCS
µ 0.0014 0.0014 0.0009 0.0010 0.0003 0.0003
ω -3.6239 -3.6140 -4.0320 -4.0197 -3.6738 -3.9556
φλ 0.9183 0.9198 0.9750 0.9600 0.9900 0.9895
κλ 0.0401 0.0400 0.0282 0.0254 0.0106 0.0072
log likelihood -2256.9470 -2241.1552 -2643.6784 -2645.8744 -2839.4584 -2839.4039
BIC 4525.8939 4494.3104 5299.3568 5297.7488 5690.9168 5670.8077

Panel B: SV model with Logistic Distribution
DCS Censored DCS DCS Censored DCS DCS Censored DCS

µ 0.0008 0.0008 0.0006 0.0006 0.0004 0.0004
ω -4.5122 -4.5132 -4.8804 -4.8804 -5.3341 -5.3379
φλ 0.9409 0.9433 0.9588 0.9588 0.9767 0.9782
κλ 0.0287 0.0338 0.0186 0.0186 0.0273 0.0267
log likelihood -2248.8988 -2230.1476 -2639.7811 -2639.7811 -2824.3777 -2818.7886
BIC 4509.7967 4472.2951 5291.5621 5291.5621 5660.7554 5649.5773

Panel C: SV model with Student t Distribution (v = 2)
DCS Censored DCS DCS Censored DCS DCS Censored DCS

µ 0.0002 0.0001 0.0003 0.0003 0.0000 0.0000
ω -3.9033 -3.8449 -4.2255 -4.1574 -3.6678 -3.6599
φλ 0.9418 0.9475 0.9852 0.9941 1.0000 0.9999
κλ 0.0672 0.0713 0.0315 0.0306 0.0321 0.0283
ν 4.1592 3.9478 6.2385 6.0512 4.5174 4.4792
log likelihood -2236.2685 -2224.3694 -2623.6669 -2615.3882 -2805.9347 -2784.9099
BIC 4487.5371 4463.7389 5262.3338 5245.7765 5626.8694 5584.8199

Panel D: two component SV model with Gaussian Distribution
DCS Censored DCS DCS Censored DCS DCS Censored DCS

µ 0.0015 0.0014 0.0009 0.0010 0.0021 0.0014
ω -4.0018 -3.6147 -4.0306 -4.0191 -3.8142 -3.9101
φλ,1 0.9912 0.9903 0.9825 0.9736 0.9946 0.9932
φλ,2 0.7953 0.7873 0.8830 0.8447 0.8473 0.8806
κλ,1 0.0089 0.0347 0.0195 0.0146 0.0054 0.0060
κλ,2 0.0067 0.0056 0.0093 0.0108 0.0054 0.0051
κ∗1 0.0674 0.0858 0.0021 0.0704 0.0154 0.0172
κ∗2 0.1125 0.1309 0.0342 0.1360 0.0292 0.0386
log likelihood -2209.5083 -2189.5540 -2610.2233 -2602.1798 -2797.0238 -2770.6155
BIC 4443.0165 4403.1079 5244.4467 5228.3595 5618.0476 5565.2311

Panel E: two component SV model with Logistic Distribution
DCS Censored DCS DCS Censored DCS DCS Censored DCS

µ 0.0009 0.0014 0.0006 0.0006 0.0000 0.0004
ω -4.2339 -4.6147 -4.6309 -4.8692 -4.7476 -5.3451
φλ,1 0.9994 0.9903 0.9978 0.9497 0.9901 0.9819
φλ,2 0.8765 0.8873 0.8783 0.8427 0.8319 0.8194
κλ,1 0.0193 0.0360 0.0179 0.0228 0.0364 0.0218
κλ,2 0.0073 0.0046 0.0192 0.0174 0.0185 0.0097
κ∗1 0.0184 0.0858 0.0177 0.0175 0.0217 0.0430
κ∗2 0.0264 0.1309 0.0239 0.0275 0.0317 0.0644
log likelihood -2204.4196 -2172.5540 -2605.0996 -2590.5984 -2727.2849 -2719.1177
BIC 4432.8392 4369.1079 5234.1992 5205.1968 5478.5698 5462.2355

Panel F: two component SV model with student t Distribution (v = 2)
DCS Censored DCS DCS Censored DCS DCS Censored DCS

µ 0.0003 0.0002 0.0003 0.0002 0.0002 0.0001
ω -3.9153 -3.8777 -4.1334 -3.5777 -3.8418 -3.7488
φλ,1 0.9907 0.9897 0.9733 0.9731 0.9889 0.9887
φλ,2 0.8785 0.8921 0.8651 0.8620 0.8873 0.8742
κλ,1 0.0179 0.0153 0.0223 0.0215 0.0110 0.0121
κλ,2 0.0017 0.0015 0.0104 0.0116 0.0021 0.0019
κ∗1 0.0055 0.0048 0.0032 0.0028 0.0029 0.0030
κ∗2 0.0488 0.0472 0.0371 0.0342 0.0330 0.0314
ν 4.4216 4.4631 5.7148 4.4831 4.6440 5.0274
log likelihood -2201.3214 -2164.4532 -2601.3231 -2583.8890 -2718.2125 -2707.3345
BIC 4429.6428 4355.9064 5229.6462 5194.7780 5463.4250 5441.6690
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Figure 2: Correlogram of scale scores from censored DCS two component mo-
del with student t distribution fitted to Inner Mongolia Baotou Steel Union
stock returns
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Figure 3: Estimated probability of price limit hitting for Inner Mongolia
Baotou Steel Union stock returns from two component model with Student t
distribution. The horizontal line shows the unconditional probability of price
limit hitting.
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Figure 4: Comparison of estimated volatility from two component DCS and
censored DCS model with student t distribution for Baotou Steel Union stock
returns.
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