
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1984

SuperBIB: A set of superior programs for the Unix bibliographic SuperBIB: A set of superior programs for the Unix bibliographic

system system

A. Y. Liao
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Liao, A. Y., "SuperBIB: A set of superior programs for the Unix bibliographic system" (1984). Graduate
Student Theses, Dissertations, & Professional Papers. 5090.
https://scholarworks.umt.edu/etd/5090

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5090?utm_source=scholarworks.umt.edu%2Fetd%2F5090&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1976

Th i s i s an . u n p u b l i s h e d m a n u s c r ip t i n which c o p y r ig h t s u b ­

s i s t s , Any further r e p r i n t i n g of i t s contents must be ap pro v ed

BY THE AUTHOR.

Ma n s f i e l d L ib r a r y
Un i v e r s i t y of Montana
Date : - . 1 8 8

SUPERBIB - A SET OF

SUPERIOR PROGRAMS FOR THE UNIX BIBLIOGRAPHIC SYSTEM

A.Y. (Michelle) Liao

Presented in partial fulfillment
of the requirements for the degree of

Master of Science
UNIVERSITY OF MONTANA

1984

by

airman, Board of Examiner

Dean, Graduate School

....Date

UMI Number: EP40554

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation; PibfeKtse

UMI EP40554

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Liao, A.Y. (Michelle), M.S., Dec. 1984 Computer Science

SuperBIB - a Set of Superior Programs for the Unix
Bibliographic System (190+viii pp.)

Director: Dr. Alden Wrigh

This project analyzed, designed and implemented a set
of human-engineered superior programs, SuperBIB, for
the Unix bibliographic system, Unix-bib. SuperBIB
frees its user from the rigid operations of Unix-bib.
The user may become comfortable with using SuperBIB
in a short time, due to the fact that SuperBIB is
menu-driven, screen-oriented and employs windows.

SuperBIB was developed by using modern techniques of
software engineering. The functional specifications
of SuperBIB were developed through the use of De
Marco’s Structured Analysis techniques. Due to the
fact that predominantly this project was to develop a
user interface, the SuperBIB analysis was comple­
mented by developing a menu tree, a hierarchy of
menus, and a draft of a user's guide at an early
stage. The design of SuperBIB was developed through
the use of principles of good software design and
Structured Design techniques. To document the design,
Structure Charts were used. To verify the design, a
prototype was written. Top-Down and Structured Pro­
gramming techniques were used to implement SuperBIB.
Top-down testing was conducted along the way.

This project proved that programs can be made easier
to use by adapting the human-engineering techniques
that are commonly applied to microcomputer (personal
computer) software.

ii

TABLE OF CONTENTS

ABSTRACT ii
1. PROJECT FORMULATION 1
1.1 Fundamentals of a Bibliography 2
1.2 An Overview of Current Methods 3
1.2.1 A Typical Case 4
1.2.2 Typical Problems of Manual Methods 4
1.2.3 Aids Available But Not Used.. 5

1.3 Features of Automated Bibliographic Systems
 6
1.3.1 Automated Systems Available at UM 6
1.3.2 A Summary of Features 7
1.3.3 Features of Unix-bib................... 10
1.3.4 Features of BIBLIO.................... 10
1.3.5 Features of LIBHCOR................... 12

1.4 Problems of Current Automated Systems 12
1.4.1 A Summary of Problems 13
1.4.2 Problems of Unix-bib 13
1.4.3 Problems of LIBHCOR 15
1.4.4 Problems of BIBLIO.............. 16

1.5 Solutions 18
1.5.1 Human Engineering 18
1.5.2 Justification for Developing SuperBIB 20

2. ANALYSIS 22
2.1 Fundamentals of Analysis 23
2.1.1 What Is An Analysis 23
2.1.2 Difficulties of Analysis 23
2.1.3 What Is Structured Analysis ? 24
2.1.4 Elements of the Data Flow Diagram....... 25
2.1.5 The Derivation of the Data Flow Diagram
 26

2.2 An Overview of Unix-bib 26
2.3 Structured Analysis of Unix-bib 29
2.3.1 Physical Data Flow Diagram of Unix-bib
............... 31

2.3.2 Logical Data Flow Diagram of Unix-bib 33
2.4 A Summary of the SuperBIB Requirements 33
2.5 Structured Analysis of SuperBIB 35
2.5.1 Logical Data Flow Diagrams of SuperBIB
.............. 36
2.5.1.1 Context Diagrams 37
2.5.1.2 Level-0 Data Flow Diagram of Super­
BIB 38

iii

iv

2.5.1.3 Add Reference Entries 41
2.5.1.4 Inquire Reference Entries 42
2.5.1.5 Format the Bibliography 44
2.5.1.6 Modify Reference Entries 45
2.5.1.7 Sort Reference Entries 46

2.5.2 Physical Data Flow Diagram of SuperBIB
..................................... 47

2.5.3 Data Dictionary Processor 48
2.6 Templates 51
2.7 Analysis of Human-machine Interaction 54
2.7.1 Menu Tree 54
2.7.2 Samples of SuperBIB Menus 58

2.8 Problems Encountered 60
2.8.1 Problems of Deriving Data Flow Diagrams
 61

2.8.2 Different Views of Unix-bib 62
2.8.3 Solutions to Different-view Problem 65
2.8.4 Characteristics of A User Interface Pro­
ject 66
2.8.5 Conclusions........ 67

3. DESIGN..................................... 68
3.1 Fundamentals of Software Design 69
3.1.1 What IS Design? 69
3.1.2 Software Costs and Design 69

3.2 Principles of Good Software Design 70
3.2.1 Top-down Approach 71
3.2.2 Top-down Design 73
3.2.3 Ease of Expansion and Contraction....... 74

3.3 A Summary of the SuperBIB Requirements 74
3.4 Structured Design and its Application 75
3.4.1 Structure Chart 76
3-4.2 Transform Analysis 77
3.4.3 Transaction Analysis 82

3.5 Architectural Design for SuperBIB 84
3.5.1 SUPERBIB 85
3.5.2 ADD BIB 88
3.5.3 Action Modules of ADDBIB 88
3.5.4 Detailed Modules 90
3.5.5 Notes from Designer 90

3.6 Pseudo Code of SuperBIB 91
3.6.1 SUPERBIB 92
3.6.2 ADD BIB 93
3.6.3 ADD BOOK 94
3.6.4 ADD AUTHOR'S NAME 95
3.6.5 ADD NAMES 96
3.6.6 INQUIRE BIB 97
3.6.7 FMT BIB 98
3-6.8 MOD BIB.............................. 99

V

3.6.9 HELP 99
3.7 Prototype 99
3.8 Discussions 101
3.8.1 Design Principle 102
3.8.2 Structured Design Techniques 102
3.8.3 Menu Tree and User's Guide 104
3.8.4 Pseudo Code 105
3.8.5 Prototyping 106
3.8.6 Analysis Phase Is Most Important 107

4. IMPLEMENTATION 109
4.1 Principles of Good Software Implementation

.............. 109
4.1.1 Top-down Implementation 109
4.1.2 Structured Programming 111

4.2 Implementation Environment for SuperBIB 112
4.2.1 Unix Programming Environment 112
4.2.2 Software Project management System 113
4.2.3 Choice of Programming Language....... 115

4.3 SuperBIB Implementation 117
4.3.1 SuperBIB Source Files and Modules 118
4.3.2 Header File 118
4.3.3 Name a Reference File 120
4.3.4 SuperBIB's Executive Module 120
4.3.5 Add Reference Entries 121
4.3*6 Add Regular Book Entries 123
4.3.7 Add Author Names....................... 124
4.3.7.1 Add Names 124

4.3.8 Search References 125
4.3.9 Print Bibliography 126
4.3.10 Modify Reference File 127
4.3*11 Sort References 127
4.3.12 Exit SuperBIB System 128
4.3.13 Index File of the Bibliographic Data­
base 128
4.3.14 On-line Help.............. 128

4.4 Problems Encountered’........ 129
4.5 Conclusions 131

5. CONCLUSION 133
5.1 Human-Engineering 133
5.1.1 What are Human-Engineering Techniques?
 133

5.1.2 Why not in Mainframe? 134
5.1.3 Theory and Hypothesis 135
5.1.4 Transition to Mainframe 135
5.1.4.1 Variety of Terminals 136
5.1.4.2 Reverse Video 138
5.1.4.3 300-Baud Links 138
5.1.4.4 Lack of Editing Power 138

vi

5.1.5 More Useful? 139
5.2 Value of Software Engineering Methods 140
5.2.1 Analysis 141
5.2.2 Design 143
5.2.3 Implementation 144

5.3 Future Work 145
5.3*1 Minor Enhancements 146
5.3.2 Major Enhancements 146
5.3.3 Interfaces with BIBLIO, LIBHCOR and WLN
 148

Appendix A 150
Appendix B 152
BIBLIOGRAPHY 189

LIST OF TABLES

1-1 The Characteristics of UM's Bibliographic Sys­
tems 7

1-2 Features of UM's Bibliographic Systems 8
1-3 Problems of UM's Bibliographic Systems 14
2-1 A Sample Unix-bib Reference File 27
2-2 Key-letters Recognized by Unix-bib 28
2-3 A Sample Terminal Session 30
2-4 A Sample Bibliography....................... 31
2-5 The NAME A REFERENCE FILE Menu 59
2-6 The SELECT A COMMAND Menu 60
3-1 The Proposed Window Layout 92
3-2 Key-letters Recognized by SuperBIB 97
4-1 SPMS Project Directory Tree 115
4-2 Source-code Files and Modules 120

vii

LIST OF ILLUSTRATIONS

2-1 The Physical Data Flow Diagram of Unix-bib 32
2-2 The Logical Data Flow Diagram of Unix-bib 34
2-3 The Context Diagram of SuperBIB 37
2-4 The Logical DFD of SuperBIB 39
2-5A The Logical DFD of ADD REFERENCE ENTRIES 41
2-6 The Logical DFD of INQUIRE REFERENCE ENTRIES

.................................. 43
2-7 The Logical DFD of FORMAT BIBLIOGRAPHY........ 44
2-8A The Logical DFD of MODIFY REFERENCE ENTRIES

 45
2-9 The Logical DFD of SORT REFERENCE ENTRIES 47
2-10 The SuperBIB Menu Tree 55
3-1 The First Cut of the SuperBIB Design 80
3-2 The Architectural Design of SuperBIB 86

viii

CHAPTER 1

PROJECT FORMULATION

Currently, almost all of the many thousands of

bibliographies produced on the University of Montana (UM)

campus are prepared and maintained by manual methods. The

tasks involved are error-prone, repetitious, laborious and

time-consuming. In addition, the manual process has lim­

ited search and select capabilities, valuable functions

for preparing and maintaining bibliographies.

Many bibliographic systems have been developed to

automate these tasks. Among these are the Unix biblio­

graphic systems, Unix-bib, a group of the SYSTEM-1022 ti­

ll programs, BIBLIO, and LIBHCOR, a BASIC program. All

three of these systems are available on UM's computers.

However, the programs are used very little. Perhaps some

of those who otherwise would use these programs do not do

so because they are unaware of their existence, their

department lacks a computer services budget, etc. Cer­

tainly one important reason is that these programs are not

[1-1] SYSTEM-1022 is a database management system.

1

2

easy to use.

The hypothesis of this thesis Is that such programs
can be made easier to use by utilizing human engineering

(user-friendly) techniques that are commonly applied to

microcomputer software. To test that hypothesis, a

preprocessor (user interface) for the Unix bibliographic

system was successfully analyzed, designed, and imple­

mented. This preprocessor, "SuperBIB,11 is menu-driven,

screen-oriented and employs windows.

.1.1. FUNDAMENTALS OF A BIBLIOGRAPHY

A regular bibliography contains a list of citations
(authors' names, titles, and publication dates, etc.) that

refer people to publications for a particular subject. One

may use a regular bibliography to record the publications

that he has read, or desires to read [1-2], An educator

may use a regular bibliography which lists the publica­

tions that he expects his students to read. There should

be a bibliography (or reference) at the end of a research

paper, an article, or a book. A regular bibliography may

[1-2] To avoid awkward syntax the author has chosen to
employ the traditional masculine pronouns as the generic
forms.

have different formats, such as the one specified by the

Modern Language Association (MLA), social science and

natural science formats. Thus, one bibliography differs

from another by use and by styles for different discip­
lines.

Furthermore, some bibliographies are annotated. An
annotated bibliography lists citations and describes pub­

lications with abstracts, comments, library call number,

the nearest location of a copy of the publication avail­

able, or other information. It provides us with some

further information about the publication beyond the bare

citation.

An abstract may have 150-300 words; a comment may

have up to 1000 words; a library call number may have 5-12

characters, and the nearest location of an available pub­

lication may be a code name (or a full name) of a local
library or institution.

JL2. AN OVERVIEW OF CURRENT METHODS

Current methods of processing bibliographic informa­

tion are these:

4

(1) pencil and paper, or index cards,

(2) computer text editors,

(3) automated bibliographic systems.

1-2-1- A TYPICAL CASE

When the author started this project, she visited a

representative department at this University, History. The

author found that they manually prepared their biblio­

graphic information by using index cards. In one case an
estimated 3000 sets of bibliographic data (citations,

annotations) were recorded on index cards and published

later as a bibliographic book [1-3]. This is not an iso­

lated case. Many faculty members and students are prepar­
ing their bibliographies manually at UM.

1-2.2. TYPICAL PROBLEMS OF MANUAL METHODS

The manual process Is error-prone, laborious, repeti­

tious and time-consuming, at best. First, it requires a
great deal of effort to record the bibliographic informa­

tion on index cards. Once the information is recorded, it

is not easy to make changes. This method provides only

[1-3] by L. Frey.

5

limited sort, search, and select capabilities. To provide

basic search and inquiry capabilities, duplicate informa­

tion may have to be maintained, but in different orders.

Furthermore, the printing is entirely separate from the

manual preparation of bibliographies. To get camera-ready
bibliographies, typesetting or typing is necessary.

The preparation of bibliographies is a perfect appli­

cation for the computer, since the computer is good at

recording, searching and sorting information. The informa­

tion stored in the computer may be easily modified and

camera-ready bibliographies may be generated at a touch of

the finger.

1.2.2. AIDS AVAILABLE BUT NOT USED

There are three automated bibliographic systems
available on this campus; however, they are used very lit­

tle. These systems, Unix-bib, BIBLIO, and LIBHCOR, are at
least fairly powerful; they accept, alter, search, sort,

format and print bibliographic information with a minimum

of effort. All UM departments have fairly adequate com­

puter access, and a computer services budget; however,

most people at UM still use manual methods to prepare

their bibliographies. Why do they continue to use manual

methods? Possible answers to that question are these:

6

(1) they are unaware of the existence of any automat­
ed bibliographic system,

(2) the bibliographic systems are difficult to use,

(3) they have difficulties in accessing computers
during prime time,

(M) they do not have a sufficient computer budget,

(5) they are afraid of computers,

(6) some bibliographic information is not in English
and is therefore difficult to process with
current systems.

1.2. FEATURES OF AUTOMATED BIBLIOGRAPHIC SYSTEMS

U3.1. AUTOMATED SYSTEMS AVAILABLE AT UM

The characteristics of the bibliographic systems

available at UM are summarized in Table 1-1.

7

Table 1-1 Characteristics of the Bibliographic
Systems Available at UM.

Name
I I

Host I source code I Affiliate
Computer[written in I Responsible

Source of
Information

Unix-
bib

Vax-11/
750 &
785

I
I the C
I language
I

I
IComputer
I Science &
ICC.

J.Barr

BIBLIO DEC-20 I PL1022
I

I Computer
I Center(CC)

R.Walton

LIBHCOR DEC-20 I BASIC-PLUS
I 2
I

I Chemistry
I
I

R.Field

Note that Unix-bib is an abbreviation for the Unix
bibliographic system. PL 1022 is a programming lan­
guage in the SYSTEM-1022 database management system.

1.2.2. A SUMMARY OF FEATURES

All three bibliographic systems produce bibliogra­

phies with a minimum of effort. Major features of these

three systems are summarized in Table 1-2.

8

Table 1-2 Features of the Bibliographic Systems
Available at UM.

I
Features I

Unix-bib
I
I BIBLIO
I

LIBHCOR

Reference file I
creation/update I

X
I
I x
I

X

Search I X I x X

Regular I
bibliography I

X I X
I

X

Annotated I
bibliography I

X I X
I

Reference file I
alteration w/o I
using editor I

I X
I
I

X

Sort I X I X
Multiple I
annotation fields!

X

Classification; I
Library call I
number I

X I X
I

X

Verification I I X X

DELETE/DFIND I
I

I x
I

Note that the check mark, X, indicates the feature
exists in the particular bibliographic system.

9

The labels used In Table 1-2 are described below

briefly:

(1) Reference File Creation or Update: The biblio­
graphic system may create a reference file, or
append reference entries to the end of a refer­
ence file, where a reference file is a collection
of reference entries; a reference entry is a col­
lection of all entry elements for a particular
publication; an entry element may be a citation
(an author's name, a title, or a publication
date, etc.)> and an annotation (an abstract, com­
ments, etc.),

(2) Reference File Alteration Without Using Editor:
The user may alter a reference file without in­
voking a text editor.

(3) Search: The user may search for a particular en­
try in a reference file.

(4) Sort: The user may sort the reference entries ac­
cording to certain criteria, i.e., the authors'
last names.

(5) Multiple Annotation Fields: The user may enter
annotation information such as abstracts, com­
ments, or the nearest location of a copy of the
publication available, etc.

(6) Classification, Library Call Number: This is an
analogue of a library card catalogue system. For
example, the user may give an unique name (or
number) to all publications about a particular
research project. The purpose is to organize the
reference file and to retrieve the information
easily.

(7) Verification: The user may verify and correct the
inputs of a particular reference entry.

(8) DELETE/DFIND: The user may drop some reference
entries out of sight, but these entries are still
on-line and may be retrieved by using DFIND com­
mand.

10

2.2-3* features of unix-bib

Unix-bib is one of the most powerful bibliographic

systems currently available. Unix-bib can construct
reference files. Each reference entry contains all infor­

mation about a particular publication. One or more refer­

ence files and as many reference entries as desired may be

maintained in Unix-bib. Quick access to a reference entry
stored in a reference file is provided by maintaining an

inverted index. All, or a part, of the entries in the
reference file may be formatted into a bibliography. The

bibliography may be displayed on a terminal, may be stored

in a file, or may be printed on a printer. An imprecise

(incomplete) indication of a reference citation, such as
'[. Budd 1982 .]', in an Nroff (a Unix text processing

system) text file may be replaced by a more precise cita­

tion string, such as [1], corresponding to the entry in

its bibliography. The information about the nearest loca­

tion of a copy of the publication is provided optionally.

1-2-ii* features of biblio

BIBLIO has capabilities which are similar to Unix-

bib' s. According to "The User's Guide for BIBLIO - A Com­

puterized Bibliographic System" by the University of Chi­

cago [BIBLIO,1981], BIBLIO can:

11

(1) create one or more sets of reference files with
as many reference entries as desired,

(2) easily make alterations to an entire reference
file, or to an individual reference entry,

(3) call up an individual or group of reference en­
tries,

(4) organize reference entries in accordance with
specific classifications, i.e. all reference en­
tries related to a particular research project,

(5) select reference entries by various criteria,
i.e. a particular author’s name, or date of pub­
lication,

(6) format reference entries for printing the bi­
bliography,

(7) print all or a part of a reference file.

BIBLIO allows its user to verify the input before

updating the files, and to alter the input if necessary.

BIBLIO may easily organize the reference entries in accor­

dance with specific classifications. Four categories of

information for each reference entry may be entered by the
BIBLIO user. The four categories are the citation,

abstract, search words (key-words, or ’list of topics' of

BIBLIO) and classification ('library number' of BIBLIO).

The DELETE command of SYSTEM-1022 drops some reference

entries out of the user's sight, however these references

are still on-line and may be retrieved by using the DFIND

command. Some users may find this feature useful.

12

1*1*5. FEATURES OF LIBHCOR

LIBHCOR is the most pleasant one to use among the
three. But LIBHCOR Is also the simplest and least power­

ful. According to "Computerized Bibliography on Homogene­

ous Chemical Oscillating Reactions (LIBHCOR) Search

Manual" by M. Burger [Burger,19833, LIBHCOR allows its
users to:

(1) enter titles, authors' names, publishers, other
search words (key-words), and classifications
('reference numbers' of LIBHCOR),

(2) search for the authors' names, titles,, publish­
ers, other search words (key-words), classifica­
tions, or a combination of these,

(3) store the retrieved reference entries in a file,

(4) print the bibliography.

Before pressing the RETURN key on the terminal key­

board, LIBHCOR allows the user to alter,the inputs of a

reference entry. After the return key is pressed, one must

use a text editor to alter input.

1.4. PROBLEMS OF CURRENT AUTOMATED SYSTEMS

13

J..4.1. A SUMMARY OF PROBLEMS

The problem with all three bibliographic systems is

that the software is not easy to use. Problems of the sys­
tems are summarized in Table 1-3.

1.4.2. PROBLEMS OF UNIX-BIB

The problem with Unix-bib is that it is not very easy

to learn, due to the fact that Unix was written originally

for sophisticated software developers, and the fact that
the Unix programming environment is highly diversified.

And it is easy to forget how to use Unix-bib, due to the
fact that the human engineering work was inadequate in

this system, especially relating to the creation (or

update) of a reference file. A part of the reason is that

few users would use a bibliographic system daily. There­

fore, they are not likely to remember every little detail.

Unix-bib is particularly difficult to experiment with
because it demands a rigid format for its reference file,

and a working knowledge of one of the Unix editors (vi,
ed, etc.) is required. To produce a bibliography, a

minimum of three Unix programs (text editor, Invert and

Roffbib) have to be called and in sequence. The alteration

of a reference file depends completely on a text editor,

Table 1-3 Problems of the Bibliographic
Systems at UM.

Problems I
Unix-bib I BIBLIO LIBHCOR

Knowledge of I
operating system I
required I

X I X X

Knowledge of I
programming I
language required I

I X

Knowledge of I
editor required I X I sometimes sometimes
Rigid format I
for reference I
file I

X

Rigid Typing I
instructions I

X

Upper/lower case I
letters are I
different during I
a search I

X

Annotation not I
available I

X

Sorting routine I
not available I

X

Fixed element I
length I

I X X

Note that the check mark, X, indicates the problem
exists in the particular bibliographic system.

15

there are no alternatives.

In short, Unix-bib is tough enough for an experienced

user and, it is much more difficult for a novice user.

1.4.2. PROBLEMS OF LIBHCOR

LIBHCOR is not in a public domain on the DEC-20,

therefore its access is limited. In addition, LIBHCOR is

not built on any database system, hence its features are
limited.

LIBHCOR requires its user to follow a set of rigid
typing instructions closely. For example, the title of a

journal article must start with an upper case letter. For

a book title, the first letter of all words except prepo­

sitions must be capitalized. The author's name, and all
coauthors' names are typed with upper case letters, last

name first, a colon, then the initials of the first names.
A colon separates the coauthor's name. The first letter

of the full title of a journal is upper case followed by

the volume number, year (in brackets) and the starting

page of the article. In conference proceedings and

multi-authored books, the editor is also shown with upper

case letters.

16

LIBHCOR has a fixed number of input lines for each

entry element. For example, there are three lines for

each title entry, two lines for each author's name entry

and a single line for each entry library call number.

LIBHCOR always asks for the inputs to the next line if the

user has not used them up. The user has to type *M* to

indicate that there is no more input for a particular

entry element. In addition, LIBHCOR cannot accept

abstracts or comments, therefore it cannot produce an

annotated bibliography.

LIBHCOR does not map upper case letters to lower case

letters or vice versa. The LIBHCOR user may have to search

for both upper and lower case letters for a single search

because LIBHCOR differentiates between upper and lower

case letters during a search. In addition, LIBHCOR cannot

sort a bibliography.

J..4.4. PROBLEMS OF BIBLIO

BIBLIO is not completely implemented, a minimal

knowledge of the SYSTEM-1022 database management system is

needed, therefore a naive user may not be able to use

BIBLIO at all.

17

Certainly BIBLIO is not easy for a novice user. For

example, BIBLIO requires its user to type 'USE

BIBLIO:ADDON' to add information into a reference file.

To know an appropriate command to invoke, the BIBLIO user
may have to memorize it, or refer to a user's guide.

Part of BIBLIO is more friendly. For example, it
prompts its user with 'K, C, A, B, Q or?'. Thus, 'K *

indicates the keyword file, 'C' indicates the classifica­
tion (library call number) file, 'A' indicates the

abstract file, 'B' indicates the citation file, 'Q' indi­

cates exit, and '?' indicates help. This reminds the user

of all the options (commands) he has at this point of

operation, and the user does not have to memorize the com­

mand, or refer to the user's guide constantly.

One of BIBLIO's problems is that it uses code names

and the code name is not very descriptive. For example,

to select the type of publication, BIBLIO prompts its user

with 'B1, B2, B3, B4, J1, J2, Cl, C2, ?, Q'. Thus, 'B 1•

indicates that the book entry to be added has an author's

name, a publishing date, a title, a publishing city, and a

publisher, but nothing else. The 'B2' indicates that the

book entry has all elements of ’B1' plus a volume number,

and edition, but nothing else. The *B3' indicates that

18

the book entry has an author's name, a publishing date, a

title, additional information #1 and additional informa­

tion 4 2 , but nothing else.

To search for a particular entry element, the BIBLIO

user needs to open a specific type of reference file, then

enter an appropriate command. For example, to search for

a particular author's (or coauthor's) name, the user needs,

to open an author file, and enter an appropriate System-

1022 search command. Commands to search for the publica­

tions which are authored by Smith and coauthored by Jones

are listed below:

(1) OPEN author_filename,

(2) FIND AUTHOR CONTAINS smith OR Jones. (This may be
abbreviated as 'F AUT CT smith OR jones'.)

A BIBLIO entry element has a maximum length. For

example, the maximum length for an author's name entry is

80 characters. This may or may not be a problem.

1.5. SOLUTIONS

1.5.1- HUMAN ENGINEERING

The hypothesis is that programs can be made easier to

use (hence, will be more widely used) by adapting human-

19

engineering techniques that are commonly applied to micro­

computer software.

The software written for mainframe computers will

likely not be human-engineered, because the mainframe user

is often expected to be more sophisticated. Microcomput­

ers are primarily for members of the general public who
may not be familiar with computers, or programming

languages. Therefore, microcomputer software tends to be

easier to use and attempts to be "user-friendly". To

accomplish this, microcomputer software is often menu-

driven, screen-oriented, and employs windows.

Menu-driven software displays a menu of options (com­

mands) on the user's terminal screen. The user may indi­

cate his selection by pressing one or two keys on his ter­

minal keyboard. The user usually does not need to memorize

the command, or refer to the user's guide constantly.

Most commands he may need at one point of software execu­

tion are displayed on the terminal. Further, to indicate a

command desired, the user does not have to spell out every

letter of the command; he only needs to press one or two

keys. In addition, function keys may be programmed to

allow the user to issue commands in shorthand. Therefore,

menu-driven software is easy to use.

2°

A screen-oriented program employs the full capabili­

ties of a modern video terminal. The direct cursor

addressing capability enables input and output at any spot
of a video screen, therefore an entire screen may be util­

ized at any given time. A non-screen oriented program usu­
ally behaves as if employing a paper-based terminal and

the input or output is sequentially printed down the

screen (paper). It is more difficult to implement menus

and other human-engineering techniques with this type of

program and terminal.

A program may divide a video terminal screen into

multiple windows, each a miniature of the screen. One win­

dow may be used for displaying the menu options and

accepting the user’s selection. The other window may be

used for displaying on-line help, if desired. Thus, the

user may access on-line help while a window for the

current operation remains intact. Multiple windows can
establish a vivid dialogue between the user and the sys­

tem, and allow the user to utilize multiple terminal
screens virtually while physically he has only one.

1*5*2. JUSTIFICATION FOR DEVELOPING SUPERBIB

The author attempted to adapt the above human

engineering techniques for one bibliographic system,

21

Unix-bib. Unix-bib is chosen over BIBLIO and LIBHCOR for

the following reasons:

(1) It was suggested by an expert Unix-bib user, the
project commissioner, Dr. Barr. He personally
used Unix-bib and felt that it should have been
improved in the areas of user-friendliness.

(2) The author is interested in programming in the
Unix environment and in the C language. Unix pro­
vides the most powerful programming environment
compared to any other operating system currently
in the market. Unix has a rich collection of
software tools. By using these software tools it
is likely that a software developer does not have
to write his programs from scratch.

(3) A Vax-11/750 computer, running under the Unix
operating system, provides broad services to the
faculty and students in this Department. In addi­
tion, UM has acquired a Vax-11/785 computer which
is running under Unix. The Vax computers are
likely to become major teaching tools in this
University. A human engineered Unix bibliographic
system might be utilized by a good number of
faculty members and students on this campus, if
it had been developed successfully.

(4) Unix is gaining popularity nationwide and it is
available in both mainframes and microcomputers.
Most universities and colleges have Unix systems.
Business executives are beginning to recognize
the power of Unix.

CHAPTER 2

ANALYSIS

The development of any medium to large-sized software
project involves three phases, analysis, design, and

implementation. Among these the analysis phase is the most
important. The systems analyst must prepare a precise

document prescribing what has to be done to solve the
problem at hand. In the case of replacement of an existing

system, a systems .analyst studies the current system,

identifies the problems (if any), proposes a solution to

the problem (if applicable), and identifies the require­
ments of the new system. In the case where there is no

current system, the analyst skips the first three steps,

and only identifies the requirements of a proposed system.

In either instance, the user is to verify the document

prepared by the analyst before the analysis phase is com­

pleted.

The methodology of systems analysis, the analysis of

the current Unix bibliographic system (Unix-bib) and the

analysis of a new Unix bibliographic system (SuperBIB) are

discussed below.

22

23

2.1. FUNDAMENTALS OF ANALYSIS

2 . U U WHAT IS AN ANALYSIS ?

An analysis is the study of a problem which is to be
solved, prior to taking any action. In computer science,

analysis refers to the procedures adopted to understand a

problem. During an analysis, the context and the require­
ments of the solution to the problem are identified.

2.1.2. DIFFICULTIES OF ANALYSIS

Analysis Is not easy. The changing nature of the

user's needs makes the analysis even more difficult.

Interpersonal skills are very important to the sys­

tems analyst. An analyst has to understand the languages

of the software user and the software designer, because he

acts as a bridge between the two. The analyst has to com­

municate well, analyze systems appropriately, and write
quality specification documents as well.

Traditionally, the systems analyst writes pages of

text to describe his understanding of the existing system
(if any), the problem, the solution, and the requirements

of the proposed system. This document, the system specif­

ication document, usually is quite long and difficult to

24

grasp quickly.

2.J..3. WHAT IS STRUCTURED ANALYSIS ?

Structured Analysis is a set of techniques which

analyze the system graphically, and supplement the graphs

with documents written in a subset of English called

Structured English. Structured Analysis techniques allow

the analyst to perform his duties more easily, due to the

fact that graphic representations of the system are easier

to establish, and only a minimum amount of writing is

required. In addition, the specification documents

prepared by using Structured Analysis techniques are easy

to understand, therefore Structured Analysis is a better

analysis tool than the traditional text-only techniques.

According to Structured Analysis and System Analysis

by De Marco [DeMarco,1978], Structured Analysis is the use

of Data Flow Diagrams [2-1], a Data Dictionary and a

Transform Description (Minispecs, or mini-specifications)

in Structured English to build a specification document,

Structured Specification. As De Marco points out:

[2-1] See Figures 2-1 to 2-4 for examples.

25

(1) A Data Flow Diagram (DFD) is a graphic represen­
tation of a system. A Data Flow Diagram portrays
the system in terms of its components, with all
interfaces among the components indicated.

(2) The Data Dictionary (DD) is a set of definitions
of data flows and files. The Data Dictionary
provides a single place to look up definitions of
terms.

(3) The Transform Description is the statement
describing the policy that governs transformation
of input data flow(s) into output data flow(s) at
a given primitive process.

(4) Structured English is a subset of English with
limited syntax, limited vocabulary, and an inden­
tation convention to call attention to logical
blocking.

2.1..4. ELEMENTS OF THE DATA FLOW DIAGRAM

According to De Marco, Data Flow Diagrams are made up

of the following basic elements:

(1) flows of data, represented by named vectors, — >,

(2) processes, represented by circles or "bubbles",

(3) files, represented by short straight lines,

(4) data sources (originators) and information sinks
(receivers), represented by boxes which are out­
side of the domain of the system under study [2-
2].

[2-2] The USER, BIBLIO, LIBHCOR, and WLN of Figure 2-3
are the data originators and information receivers for Su-
perBIB and these are not in the domain of the SuperBIB
system.

26

2.1.5. THE DERIVATION OF TEE DATA FLOW DIAGRAM

According to De Marco, Data Flow Diagrams are derived

by using the following techniques.

(1) Identify all net system inputs (the data coming
from the originator), or all net system outputs (
the information going into the receiver) and draw
them in the outer part of the diagram.

(2) Identify other data flows between data origina­
tors and information receivers; work the way from
inputs to outputs, if possible. Otherwise, work
backwards from outputs to inputs, or from the
middle out.

(3) Label all data flows among processes.

(4) Label the processes in terms of their inputs and
outputs.

2.2. AN OVERVIEW OF UNIX-BIB

A Unix-bib reference file is a collection of refer­

ence entries. A reference entry is a collection of all

entry elements for a particular publication. An entry

element may contain a part of a citation (an author's

name, a title, a publication date, etc.), an annotation

(an abstract, or comments), or other information. The

entry elements are prefixed with a percent sign (£), a

corresponding key-letter and a space. A sample is listed

in Table 2-1.

27

Table 2-1 A Sample Unix-bib Reference File

COMMENTS FILE AS SEEN ON SCREEN

— %k M. Bishop
I %k L. Snyder

ref. < %T The Transfer of Information
entry < %J Proceedings of the 7th SOSP

I %? 45-54
— %D 1979

%E R.A. DeMillo
entry---> %E D.P. Dobkin
element %E A.K. Jones

%E R.J. Lipton
Foundations of Computation

%l ACPRESS
%D 1978
A

key-letter —

Note that one blank line separates each reference
entry.

Currently Unix-bib recognizes the key-letters listed

in Table 2-2.

28

Table 2-2 Key-letters Recognized by Unix-bib

Key-letter Description

A Author1s name
B Title of book containing an article

which the user is interested in
C City of publication
D Publication date
E Editor's name
F Caption
G Government (NTIS) ordering number
I Issuer (publisher)
J Journal name
K Search words (Key-words)
N Issue number
0 Other information
P Page numbers
R Technical report name
S Series title
T Title
V Volume number
W Nearest location where a copy of the

publication can be found
X Annotation

In the scope of this thesis project, five Unix pro­
grams are associated with the Unix-bib operations. These

programs are a Unix text editor(vi, ed, etc.), Invert,
Roffbib, Lookblb and Sortbib. The text editor, Invert and

Roffbib must be called (in this order) to produce a
bibliography appropriately. The text editor is used to

edit a reference file. Invert [2-3] is used to create, or

29

update an inverted index of the reference file for quick

search. Roffbib is used to format the bibliography.

Optionally, Lookbib [2-4] and Sortbib may be used. Lookbib

is used to search for any particular bibliographic infor­

mation; Sortbib is used to sort the bibliographic informa­

tion.

To illustrate how Unix-bib produces a bibliography, a

sample terminal session is given in Table 2-3.

A sample of the bibliography generated by using
Roffbib is illustrated in Table 2-4.

2.3. STRUCTURED ANALYSIS OF UNIX-BIB

The goal of Structured Analysis of Unix-bib is to
analyze, to document, and to verify the current operations

of the Unix bibliographic systems. The Unix-bib opera­
tions are analyzed, and documented in Physical and Logical

Data Flow Diagrams. These Data Flow Diagrams were veri­

fied by Dr. Barr, an expert Unix-bib user.

[2-3] 'Indxbib' is a Unix program similar to 'Invert'.
[2-4] 'Lookup' is a Unix program similar to 'Lookbib'.

30

Table 2-3 A Sample Terminal Session of Unix-bib
Operations

User's Inputs Comments

vi reference filename
Ci]
%k M. Bishop
%k L. Snyder

The Transfer of Information CREATE A
%J Proceedings of the 7th SOSP REFERENCE FILE
%P 45-54 USING VI EDITOR
5&D 1979
<ESC>
[ZZ]

CREATE, OR UPDATE
invert reference filename AN INVERTED INDEX

FOR REFERENCE FILE

sortbib reference filename SORT REFERENCE
ENTRIES

roffbib reference filename FORMAT BIBLIOGRAPHY

Mote that [i], <ESC> and [ZZ] are vi editor commands.
To enter insert mode, type 'i'. To exit insert mode,
press ESC key. To exit vi editor, type 'ZZ*.

31

Table 2-4 A Sample Bibliography Generated by Unix-bib

BIBLIOGRAPHY

Bishop M. and L. Snyder, The Transfer of Information,
Proceedings of the 7th SOSP, 1979, 45-54.

2.2.K PHYSICAL DATA FLOW DIAGRAM OF UNIX-BIB

Through literature research, interviews with an

expert Unix-bib user, the person who commissioned this

project, Dr. J. Barr, the author learned how the current

Unix bibliographic system works. The author tried to see

the Unix-bib operations from the viewpoint of the data,

instead of the viewpoint of any human being. This helped

the author to derive the data flow diagrams for Unix-bib.
To make the project commissioner, Dr. Barr, understand the
diagrams easily, the author used the terms that he had

used. Therefore, the data flow diagrams are full of Unix

commands and filenames, i.e. * vl reference_filename’.

These physical checkpoints helped Dr. Barr and the author

to relate the diagrams to the real operations of Unix-bib.

Since most of these checkpoints are physical In nature,

32

this diagram is called the Physical Data Flow Diagram of

Unix-bib (Figure 2-\).

The initial analysis of Unix-bib was done when the

author walked through the Physical DFD of Unix-bib with

Dr. Barr, then playing the role of an expert user, and he

accepted it as an accurate representation of his mode of

operation. The next step was to derive a Logical DFD of

Unix-bib.

SIB STYLE

NEW
ENTRIES

•eference
filename ' lookbib\

reference]
if i lename s/

REFERENCE FILE INQUIRY
RESULTS

BIBLIOGRAPHYINVERTED
INDEX

/sortbib
reference
filenameSORT

BY /

SORTED REFERENCES

Figure 2-1 Physical Data Flow Diagram of Unix-bib.

33

2.2.2. LOGICAL DATA FLOW DIAGRAM OF UNIX-BIB

To derive a Logical Data Flow Diagram, the author

removed all physical checkpoints and replaced each one

with its logical counterpart. The goal was to generalize

the Physical DFD, and to divorce the objectives of the

operations from the methods of carrying them out. As an
example, the ' reference_filename1 of the Physical DFD

was changed to 'edit a reference file' in the Logical DFD.

This step was done when the Logical Data Flow Diagram of

Unix-bib was drawn, walked through and verified by the

project commissioner-expert user. Figure 2-2 is a Logical

DFD for Unix-bib which is a transformation of the Unix-bib

Physical DFD.

2.4. A SUMMARY OF THE SUPERBIB REQUIREMENTS

The requirements of SuperBIB were identified through

literature research, the system analysis done to that

point, and interviews with an expert Unix-bib user, Dr. J.

Barr, and representatives of the potential SuperBIB users,

Professors R. Walton, R. Field, L. Frey, H. Fritz, and R.

Dhesi. In summary, Dr. Barr and the potential SuperBIB

users wanted SuperBIB to do these things:

34

BIB STYLE

format'
biblio­
graphyNEW

ENTRIES
'REPLACEMENT

ENTRIES

SEARCH
WORDSf edit a

■eference
.file / search '

' for
.patterns

INVERT
OPTIONS

'mai ntain
inverted
i i ndex

REFERENCE FILE INQUIRY
RESULTS

BIBLIOGRAPHY

7 sort '
reference
entries

SORT
BY

SORTED REFERENCES

Figure 2-2 Logical Data Flow Diagram of Unix-bib.

35

(1) Accepb citations (authors' names, titles, publication
dates, etc.)* annotations (abstracts, comments), and
other information (library call numbers, etc.) in a
human-engineering (user-friendly) fashion. Ideally,
SuperBIB should be menu-driven, screen-oriented, and
employ windows,

(2) Inquire (search and retrieve) for any particular
reference entry which meets certain criteria. The
user should be able to search for authors' names, ti­
tles, publication dates, other search words (key­
words), or a combination of these. (All entries
matching the above search criteria would be re­
trieved. The capabilities of wildcard searching and
selection of those entries matching a part of search
criteria are desired, but not required.)

(3) Print the reference information in a few basic for­
mats [2-5). (The capabilities of producing the bi­
bliography in a variety of formats are desired, but
not required.)

(4) Modify the reference information using a text editor,
if desired. (The capability of modifying without us­
ing an editor is desired, but not required.)

(5) Sort bibliographic information according to the
senior author's last name, and publication date.
(The capabilities of sorting entries by other cri­
teria are desired, but not required.)

2.5. STRUCTURED ANALYSIS OF SUPERBIB

The goal of Structured Analysis of SuperBIB is to
identify the requirements of SuperBIB, to document the

requirements predominantly in a graphic form, and to ver­
ify the documents with the representatives of the

[2-5] To produce the
bibliography in a variety of formats, working knowledge of
•Nroff* and *Bib' are required.

36

potential SuperBIB user.

The Data Flow Diagrams are graphic, partitioned and

multidimensional. It is easy to understand DFDs compared
to a long text. The DFDs display major partitions of the

system first, then go down to the details. The DFDs

emphasize the flow of data, but de-emphasize the control

information such as executive components, decision-making

or repetition, due to the fact that data flows are stable

and control information may be not.

The SuperBIB requirements were analyzed and docu­

mented in the Physical and Logical Data Flow Diagrams that

are promoted by De Marco. The Logical DFDs illustrate the

functionality of SuperBIB and the Physical DFD presents a

portion of these functionalities that are to be automated

in this thesis project.

2.5-1. LOGICAL DATA FLOW DIAGRAMS OF SUPERBIB

In theory, at the analysis stage, an analyst is

purely to describe what has to be done, not concerning

himself at all with how it will be accomplished. At the

stage of deriving the Logical DFDs, he supposedly does not

even distinguish between those that will be automated and

those that will not.

37

Due to the complexity of this project, a leveled set

of Logical Data Flow Diagrams was developed. A leveled

set of Data Flow Diagrams is composed of a hierarchy of

DFDs. According to De Marco, a leveled set of DFDs is

made up of a top, a bottom and a middle. The top is a

single diagram called the Context Diagram. The bottom

consists of a set of unpartitioned bubbles, called func­
tional primitives. The middle is everything else.

2.5.1.1. CONTEXT DIAGRAMS

Figure 2-3 is a Context Diagram of SuperBIB. The

goal of deriving a Context Diagram is to declare the

domain of this project. The domain of this project is

illustrated by a circle, labeled SuperBIB. The net input
of SuperBIB is the user's bibliographic input (USER'S

INPUT), such as citations, and the net output is the

SuperBIB output (SUPERBIB’s OUTPUT), such as the bibliog-

SuperBIB's
OUTPUTS

WASHING
TON
LIBRARY
NETWORK.

BIBLIO

Figure 2-3 Context Diagram of SuperBIB.

38

raphy, inquiry results, or sorted reference entries.

BIBLIO, LIBHCOR, or WASHINGTON LIBRARY NETWORK (WLN),

represented by boxes, are not in the domain of this pro­

ject.

2.5.1.2. LEVEL-0 DATA FLOW DIAGRAM OF SUPERBIB

Figure 2-4 is a Logical Data Flow Diagram (Level-0,

Diagram-0) of SuperBIB. The primary requirement of Super­

BIB is to accept bibliographic information, and to produce

a reference file which meets the requirements of the Unix

bibliographic system (Unix-bib). A process, ADD REFERENCE

ENTRIES, is to accomplish this task. ADD REFERENCE ENTRIES

is to accept, transform and store new reference entries

(NEW ENTRIES) in a reference file (REFERENCE FILE).

SuperBIB should search for reference entries that

match the search words supplied by the user. The search

words may be authors' last names, words from titles, pub­
lication dates, other search words, or a combination of

these. A process, INQUIRE REFERENCE ENTRIES, is to accom­

plish this task. INQUIRE REFERENCE ENTRIES gets reference
entries from REFERENCE FILE, or SORTED REFERENCE FILE. It

accepts user's search words, and searches for reference

entries matching the words. It maintains a file (INQUIRY-

RESULT FILE) which holds the matched reference entries.

39

r e p l a c e m e n t
.ELEMENT I ENTRIES

r modify \
reference)
gentries L

WHICH ENTRY
NEW ENTRIES 'SEARCH WORDS

add
eference
.entries; ri nqui r e

ref erenci
. entries

REFERENCE FILE INQUIRY RESULTS

BIB STYLES

format
bibliog-
. raphy J

SORT BY
sort '

:f erence
entries BIBLIOGRAPHY

SORTED
REFERENCE

Figure 2-4 The Logical Data Flow Diagram of SuperBIB
(Level-0, Diagram-0).

It may return pointers (markers, WHICH ENTRY) that point

to entries matching all search words, if applicable.

An ideal bibliographic system should produce a

bibliography in various formats. Process FORMAT BIBLIOGRA­

PHY is to accomplish this task to a certain degree. FORMAT

BIBLIOGRAPHY gets reference entries from REFERENCE FILE,

SORTED REFERENCE FILE, or INQUIRY-RESULT FILE. It gets

40

the user's choice for bibliographic style (BIB STYLE), and

maintains a file, BIBLIOGRAPHY, which holds the formated
bibliographic information. The bibliography may be

displayed on the terminal, printed on a printer, or stored
in a file.

SuperBIB should allow the user to modify entries. A
process, MODIFY REFERENCE ENTRIES, is to accomplish this

task. For a given entry which is marked by WHICH ENTRY,

MODIFY REFERENCE ENTRIES retrieves all, or a part, of

entry elements according to a user's choice (WHICH ELE­

MENT), and accepts replacement reference entries (REPLACE­

MENT ENTRIES).

SuperBIB should sort the reference entries by the

authors' last names and publication dates. SORT REFERENCE
ENTRIES is to accomplish this task. SORT REFERENCE

ENTRIES gets sorting criteria (SORT BY), sorts the refer­

ence entries in the reference file, and maintains a sorted

reference file (SORTED REFERENCE). The sorted entries may

be routed to a terminal screen, a printer queue, or a file

of the user's choice. Each subprocess of the level-0 DFDs

is discussed below.

41

2.5.1.3* ADD REFERENCE ENTRIES

When adding a reference entry to a reference file,

the user may want to add a regular book entry, an article

entry from a journal, an article entry from a book, a

technical report entry, an article entry from conference

proceedings, a compiled book entry, a multi-volume series
entry, etc.

Figure 2-5A is a Data Flow Diagram (Level-1,
Diagram-1) of ADD REFERENCE ENTRIES. Since there are seven

major types of publication, there are seven subprocesses

in ADD REFERENCE ENTRIES. These subprocesses are:

ARTICLE FROM
BOOK

BOOK ENTRIES SERIES

/ add
(multi-V.
V series

add ̂
conf.
procd. }

f add
[articles
\from B.

add
books

REPORT ENTRY'a r t i c l e
FROM JO URN, COMPILED

BOOK

add
technics
v reports*

add \
compi ledj
books /

add \
articles)
from J* As

REFERENCE FILE

Figure 2-5A Logical Data Flow Diagram of ADD
REFERENCE ENTRIES (Level-1, Diagram-1).

42

(1) ADD BOOK, accepts, formats and stores elements
for a book entry In the reference file.

(2) ADD ARTICLE FROM JOURNAL, accepts, formats and
stores an article entry from a journal.

(3) ADD ARTICLE FROM BOOK, accepts, formats and
stores an article entry from a book.

(4) ADD TECHNICAL REPORT, accepts, formats and stores
elements for a technical report (or M.S. thesis)
entry.

(5) ADD CONFERENCE PROCEEDINGS, accepts, formats, and
stores elements of a conference proceedings en­
try,

(6) ADD COMPILED BOOK, accepts, formats, and stores
elements of a book entry which is compiled by
editor(s).

(7) ADD MULTI-VOLUME SERIES, accepts, formats, and
stores elements of a multi-volume series entry.

The lower-level Data Flow Diagrams of ADD REFERENCE
ENTRIES (Figures 2-5B to 2-5K) are listed in Appendix A.

2.5.1.4. INQUIRE REFERENCE ENTRIES

Figure 2-6 is a Data Flow Diagram (Level-1, Diagram-

2) of INQUIRE REFERENCE ENTRIES. SuperBIB should be able
to search for and retrieve entries in the reference file.

INQUIRE REFERENCE ENTRIES is to accomplish this task.

INQUIRE REFERENCE ENTRIES may be subdivided into three

subprocesses, MAINTAIN INVERTED INDEX, PARSE SEARCH WORDS

and RETRIEVE MATCHING ENTRIES.

43
SORTED REFERRMCESSEARCH WORDS

parse
search
words

INQUIRY RESULTS'INVERT OPTIONS

Maintain
inverted
l index .

reference FILE INVERTED
INDEX

Figure 2-6 Logical Data Flow Diagram of INQUIRE
REFERENCE ENTRIES (Level-1, Diagram-2).

PARSE SEARCH WORDS parses the search words supplied

by the user, and returns valid search words, if applica­

ble. For quick search, INVERT REFERENCE FILE gets invert

options (i.e, truncating search words to six characters,

etc.), maintains an inverted index for the reference file.

RETRIEVE MATCHING ENTRIES utilizes REFERENCE FILE,

INVERTED INDEX, or SORTED REFERENCE FILE. It retrieves
reference entries that match all search words, and main­

tains a file, INQUIRY-RESULT FILE, which holds the entries

searched and selected. It also returns pointers (WHICH

ENTRY) that point to entries matching the search words, if

applicable.

2*5.1.5. FORMAT BIBLIOGRAPHY

Figure 2-7 is a Data Flow Diagram (Level-1, Diagram-

3) of FORMAT BIBLIOGRAPHY. SuperBIB formats entries into
the bibliography in a few basic formats. It also routes

the bibliography to the terminal screen, a printer queue,
or a file of the user's choice. FORMAT BIBLIOGRAPHY is to

accomplish this task. FORMAT BIBLIOGRAPHY may be subdi­

vided into two subprocesses. These subprocesses are FOR­

MAT ENTRIES and ROUTE FORMATTED ENTRIES. FORMAT ENTRIES

gets reference entries from REFERENCE FILE, SORTED REFER­

ENCE FILE, or INQUIRY-RESULT FILE, gets the user's choice

for bibliographic style (BIB STYLE), and formats the

reference entries to bibliographic entries (FORMATTED

ENTRIES). ROUTE FMT ENTRIES routes the formatted entries
to a terminal screen, a printer queue, or a file of the

BIB STYLES

route \
formatted
Gentries/"

format
entries

REFERENCE SORTED INQUIRY BIBLIOGRAPHY
FILE REFERENCES RESULTS

Figure 2-7 Logical Data Flow Diagram of FORMAT
BIBLIOGRAPHY (Level-1, Diagram-3).

45

user’s choice.

2.5.1..6. MODIFY REFERENCE ENTRIES-

Figure 2-8A is a Data Flow Diagram (Level-1,

Diagram-4) of MODIFY REFERENCE ENTRIES. SuperBIB allows

the user to modify (alter) a reference file, if he

desires. MODIFY REFERENCE ENTRIES is to accomplish this

task. MODIFY REFERENCE ENTRIES may be subdivided into

seven subprocesses [2-6]. These subprocesses are:

REFERENCE FILE

'WHICH ELEMENT

CURRENTCURRENT
Ji T D PLACEMENT/ /CURRENT /REPLACE

T_D / / E_E_A / KENT

modify modify
iublisher
.city J

modify
A.T.D. (CURRENT

CURRENT/REPLACE
R { MENT R ''C U RR 2:; T/R E P L AC E

s / MENT S

modify
report

REFERENCE FILE

Figure 2-8A Logical Data Flow Diagram of MODIFY
REFERENCE ENTRIES (Level-1, Diagram-4).

46

(1) GET MODIFYING ELEMENTS, gets the entry elements
that are to be modified, for a given entry (WHICH
ENTRY), and according to the user's choice (WHICH
ELEMENT),

(2) MODIFY AUTHOR/TITLE/DATE, modifies authors'
names, titles, publication dates.

(3) MODIFY JOURNAL/VOLUME/ISSUE/PAGE, modifies jour­
nal names, volume numbers, issue numbers, page
numbers.

(4) MODIFY EDITOR/COMPILED BOOK/ ARTICLE FROM BOOK,
modifies, editors' names, compiled book titles,
article entries from books.

(5) MODIFY REPORT NAME, modifies technical report
names.

(6) MODIFY PUBLISHER/CITY, modifies publishers, pub­
lishing cities.

(7) MODIFY SERIES, modifies multi-volume series.

The lower-level DFDs of MODIFY REFERENCE ENTRIES

(Figures 2-8B to 2-8E) are listed in Appendix A.

2.5.1.7. SORT REFERENCE ENTRIES

Figure 2-9 is a Data Flow Diagram (Level-1, Diagram-

5) of SORT REFERENCE ENTRIES. SuperBIB sorts the refer­

ence entries. It also routes the bibliography to the

[2-6] Note that this analysis applies to both modifying
methods - modifying by invoking text editor, or by answer­
ing questions. In both modifying methods, MODIFY
AUTHOR/TITLE/DATE marks the current elements as unused,
and gets the replacement element.

m

SORT BY

sort.
entries

route
sorted
entri esj

.SORTEDTILK REFERENCES

Figure 2-9 Logical Data Flow Diagram of SORT
REFERENCE ENTRIES (Level-1, Diagrara-5).

terminal, a printer queue, or a file of the user's choice.

SORT REFERENCE ENTRIES Is to accomplish this task. SORT

REFERENCE ENTRIES may be subdivided into two subprocesses.

These subprocesses are SORT ENTRIES, and ROUTE SORTED

ENTRIES. SORT ENTRIES gets sorting criteria (SORT BY),

sorts • the reference entries. ROUTE SORTED ENTRIES routes
the sorted reference entries to a terminal screen, a

printer queue, or a file of the user's choice.

2.5.2. PHYSICAL DATA FLOW DIAGRAM OF SUPERBIB

Once some physical constraints have been added, or
the area to be automated is determined, the Level-1 Logi­

cal DFDs of SuperBIB is turned into a Physical DFD.

Briefly, the SuperBIB functionalities which are not

automated are listed below.

48

(1) The capability to accept more than one paragraph
of annotations is not implemented.

(2) Only the entries that contain all of the search
words will be retrieved. The wildcard searching
and search for entries that satisfy a portion of
the search words are not implemented.

(3) The bibliography in a few basic formats is pro­
vided [2-7].

(4) The capabilities of modifying a reference file
using ex or edit editor, or modifying without in­
voking a text editor (by questions and answers)
is not developed.

(5) Sorting the reference entries by other sorting
criteria beyond the senior author’s last name and
publication dates, is not developed.

2.5.3. DATA DICTIONARY PROCESSOR

After the DFDs of SuperBIB were done, the ISDOS [2-8]

Problem Statement Language/Problem Statement Analyzer

(PSL/PSA) was used to produce supporting documents, such

as a Data Dictionary and Transform Descriptions (Min-

[2-7] To produce a bibliography with a variety of other
formats, and to have better searching capabilities, refer
to ”A Unix Bibliographic Database Facility” by Budd, and
’’Writing Papers with Nroff Using -Me” by Allman, and the
Unix Programmer's Manual. In summary, if the user creates
(or maintains) a reference file, inverts (or indxbib) the
file, creates (or maintains) an Nroff text file with im­
precise citations, invokes Bib command, the user will ob­
tain the full power of the Unix bibliographic system.

49

ispecs).

Manual procedures to maintain a Data Dictionary are

error-prone, redundant, repetitious and time-consuming. A

program managing the DD is called a Data Dictionary Pro­
cessor. The ISDOS Data Dictionary Processor allows its

user to describe the data flow and process in an English-
like language called Problem Statement Language (PSL).

Then these descriptions are analyzed for completeness and
consistency by the Problem Statement Analyzer (PSA).

The supporting documents for SuperBIB were done using

PSL under the System Encyclopedia Manager (SEM) in the

Unix environment. Every bubble in the Data Flow Diagram is

a PROCESS in PSL/PSA. Every PSL/PSA PROCESS was described

by a short description, an algorithm (if applicable), the

input and the output. These may serve as a Transform

Description (Minispecs) for the primitive processes. The

Data Dictionary was compiled using DESCRIPTION for each
ELEMENT, ENTITY, INPUT, OUTPUT and SET of the SuperBIB
system where SET was used to define files, INPUT and OUT­

PUT were used to define the net data flow (the input com­

ing from the data originator box, or the output going into

[2-8] ISDOS is the name of a project conducted at the
University of Michigan by Dr. Daniel Techroew.

50

the data receiver box), and ENTITY was used to define the

complex data flow which consists of the elementary com­

ponent, ELEMENT. INTERFACE was used to define the data

originator or receiver (the boxes in DFD).

Two PSL/PSA reports were produced, the Formatted

Statements Report and the Name Selection Report. The For­

matted Statements Report provides us with the Data Dic­

tionary and Transform Descriptions (Minispecs). The Name

Selection Report gives us a listing of all data items. The

Formatted Statements Report in partitioned format is not

available because TRACE-KEY in the current installation of

SEM does not work.

The management of the Data Dictionary and Transform

Description for a medium to large-sized software project

is not easy. The ISDOS PSL/PSA reports provide the Data
Dictionary and Transform Description in an efficient way.

The ISDOS PSL/PSA enters only non-redundant information
into its database. It is relatively easy to change an

analysis document generated by a Data Dictionary Processor

(such as PSL/PSA) during the life cycle of software

development, due to the fact that the information stored

in the PSL/PSA database is not redundant and one modifica­
tion made to the database changes all related information.

51

The consistency checking, cross-reference listing and

alias control are the other benefits of using PSL/PSA.

However, ISDOS PSL/PSA is not ideal. Its costs are
high. It requires a certain amount of initial training in

order to use it. It generates an enormous number of

reports and sometimes it is hard to utilize the reports.

The author feels that the ISDOS PSL/PSA Data Dictionary

Processor may be a necessity to manage a large-sized

software development, although its effectiveness in this

thesis project was not significant.

2.6. TEMPLATES

Each type of reference entry contains a slightly dif­

ferent set of information. For example, a regular book

entry may contain authors' names, a title, a publication

date, a publisher, a publishing city, an abstract, com­

ments, search words (key-words), etc. However, an article

entry from a journal may contain a journal title, a volume

number, an issue number, page numbers, plus all the infor­

mation for a regular book entry. In other words, each type

of publication must have its own template. The templates

of all publication types are listed below:

The template of a regular book is:

Author's Name
Title
Publisher
City
Date
Search Words
Others
Annotation

The template of an article from a journal is

Author
Title
Journal Title
Volume Number
Issue Number
Page Number
Date
Search Words
Others
Annotation

The template of an article from a book is:

Author's Name
Title
Book Title
Editor's Name
Page Number
Publisher
City
Date
Search Words
Others
Annotation

53

(4) The template of a technical report is:

Author's Name
Title
Report Title
Publisher
City
Date
Search Words
Others
Annotation

(5) The template of an article from a conference proceed­

ings is:

Author's Name
Title
Journal Title
Page Number
Date
Search Words
Others

(6) The template of a compiled book is:

Editor's Name
Book Title
Publisher
Date

54

(7) The template of a multi-volume series Is:

Author's Name
Title
Book Title
Editor's Name
Page Number
Series Title
Volume Number
Publisher
City
Date

2.7. ANALYSIS OF HUMAN-MACHINE INTERACTION

Due to the fact that this project was to develop a
preprocessor (user interface) for Unix-bib, Structured

Analysis of SuperBIB was complemented by an analysis in

the human-machine interaction area. The analysis of the

human-machine interaction in this thesis project was done

by developing a menu tree, a hierarchy of the menus, and a

draft of the SuperBIB User's Guide [2-91.

2.7.1. MENU TREE

Figure 2-10 illustrates a hierarchy of SuperBIB
menus. A brief description of these menus is listed

below.

[2-9] A copy of SuperBIB User's Guide is in Appendix B.

55

5SL E C T MOOS
iOF OPERATION

PU aL IC A T IO N

ip*

"bJAiXS A F IL E \ / SELECT A \
TYPE OP
OIDLTOGRATKY,

SEARCH WORDSi

Figure 2-10 The SuperBIB Menu Tree

56

(1) SELECT A MODE OF OPERATION. Separate nodes of
operation for the novice and sophisticated users
are desired (but not required). In this way the
sophisticated users would not be bothered by ex­
cessive information, and the novice user can get
a smooth start in the SuperBIB operation. (Note
that a novice mode of operation has higher prior­
ity over the sophisticated one.)

(2) NAME A REFERENCE FILE. The user would like to
name a reference file early in the SuperBIB
operation and keep using this file until the user
invokes a different reference file, or a sorted
reference file is created [2-10].

(3) SELECT A COMMAND, allows the user to select one
of the following commands:

ADD, adds reference entries to the reference file.
INQ, inquires of the reference entries.
PRINT, formats and prints the bibliography.
EDIT, modifies the reference file.
SORT, sorts the reference entries.
INVOKE A NEW REFERENCE FILE.
HELP, prints on-line help.
EXIT, exits SuperBIB.

(4) SELECT A PUBLICATION TYPE, allows the user to select
one of the following publication types.

BOOK,
ARTICLE FROM JOURNAL,
ARTICLE FROM BOOK,
TECHNICAL REPORT,
ARTICLE FROM CONFERENCE PROCEEDINGS,
COMPILED BOOK,
MULTI-VOLUME SERIES,
OTHERS, for unpublished materials.

[2-10] Reference Filename is Sorted Reference Filename
if the user maintained a file holding the sorted reference
entries. Select INVOKE A REFERENCE FILE at the SELECT A
COMMAND menu to change it, if the user desires.

57

(5) ENTER AN AUTHOR'S NAME, allows the user to enter an
author's name.

(6) MORE AUTHORS' NAMES? This Is to allow the user to
enter multiple authors' names. (Note that the menus
for entering other elements are similar, and are om­
itted.)

(7) SELECT A DESTINATION, allows the user to select a
destination for routing the inquiry results, bibliog­
raphy, or sorted reference entries.

(8) NAME A FILE TO STORE SEARCH WORDS, if applicable.

(9) TYPE SEARCH WORDS. Separate keys with spaces.
(10) SEARCH-WORD FILE AVAILABLE?

(11) NAME YOUR SEARCH-WORD FILE.

(12) NAME A FILE TO STORE THE INQUIRY RESULTS, if applica­
ble.

(13) SELECT A BIBLIOGRAPHY TYPE, selects the type of the
bibliography, such as regular or annotated bibliogra­
phies ,

(14) SELECT A SPACING STYLE, selects a spacing style, such
as single spaced, or double spaced, etc.

(15) NUMBER THE BIBLIOGRAPHY, gives the user an option to
number the bibliography,

(16) NAME A FILE TO STORE THE BIBLIOGRAPHY, if applicable.

(17) SELECT A MODIFYING METHOD modifies a reference file
by using a text editor, or by answering questions..

(18) SELECT AN EDITOR, selects an editor to modify the
reference file.

(19) DISPLAY HELP MESSAGE ABOUT EDITORS, displays brief
help messages about how to use vi, ed editors.

(20) DISPLAY MESSAGE ABOUT SORT KEYS,. Informs the user
what kind of sort keys he may use, etc.

58

(21) NAME A FILE TO STORE SORTED ENTRIES, if applicable.

(22) PRINT ON-LINE HELP MESSAGES, such as 'To advance the
cursor, press space bar'.

(23) EXIT PREMATURELY, terminates the SuperBIB program if
the user misuses the system, such as does nothing but
keep naming reference files. (Note that this has a
low priority.)

2.7.2. SAMPLES OF SUPERBIB MENUS

Samples of SuperBIB menus were illustrated in Tables

2-5 and 2-6.

The menu for NAME A REFERENCE FILE is illustrated

below:

Table 2-5 The NAME A REFERENCE FILE Menu

**
* SuperBIB-Super Bibliographic System *
*
* «< NAME A REFERENCE FILE. »> *
#
* *
* REF. FILE : [] *
* *
* *
ft***

Note that 'SuperBIB - Super BIBliographic
System' is a system greeting.
A symbol, [], indicates the cursor position
when the menu first appeared.
The dashed line indicates the maximum length
of the inputs.

The menu for SELECT A COMMAND is illustrated below:

Table 2-6 SELECT A COMMAND Menu

ft**
* SuperBIB-SUPER BIBliographic System *
* *
* «< SELECT A COMMAND. »> #
» *
» [] ADD ? *
* INQUIRE ? *
* PRINT ? *
* * EDIT? *
* SORT? *
* INVOKE A REFERENCE FILE? *
* HELP ? »
* EXIT ? *
* *
* To advance cursor, press space bar. *
* To select a command, press RETURN key. *
* *
* ADD INQUIRE PRINT EDIT SORT INVOKE HELP *

Note that the last line on the menu is the
contents of a status report.

2.8. PROBLEMS ENCOUNTERED

Relatively minor problems were encountered in the

derivation of Data Flow Diagrams. The author had diffi­

culties in excluding the control information, such as exe­

cutive components, etc., in the derivation of DFDs for

SuperBIB.

61

Two other problems were encountered in the analysis

phase for SuperBIB. One of these problems derived from

the fact that the project commissioner and the author per­

ceived the Unix-blb system differently. The author thought

SuperBIB not only would be a preprocessor for producing a

Unix reference file, as the project commissioner

requested, but also a preprocessor for Bib, which is a

bibliographic preprocessor for Nroff, a Unix typesetting
and text processing system.

Another problem was that the analyst, the author, did
not take into account the fact that predominantly this

project was to develop a preprocessor (user interface) for

Unlx-bib. She did not precisely specify what the user

wanted in the aspect of human-machine interaction of

SuperBIB, although the functionality of SuperBIB was

specified quite completely.

2.8.2- PROBLEMS OF DERIVING DATA FLOW DIAGRAMS

As De Marco pointed out, trivial error paths, ini­
tializations and terminations are not supposed to be in

the DFD. During the development of the DFD, a systems

analyst should not consider control information, such as

executive process, decision-making or repetition. However,

the attempt to exclude control information in the

62

derivation of SuperBIB DFDs was not very successful

because the author was used to flow-charts and procedural

thinking. The author had to revise the DFD several times

to do so.

2.8.2. DIFFERENT VIEWS OF UNIX-BIB

At the early analysis stage, the author discovered a

user-contributed (non-standard) Unix bibliographic prepro­

cessor, Addbib, which was unknown previously to the pro­

ject commissioner, due to the fact that Unix has an enor­
mous number of user-contributed software tools. Addbib

prompts its user for input leading the user to create a
reference file, or to append reference entries into an

existing reference file. To.do so, the knowledge of the

rigid format of Unix-bib reference files is not required.

Addbib is quite user-friendly, despite the fact that it

cannot accept annotations, (although its documentation

claimed it would). Since the author knew of the existence

of Addbib, and other software tools, such as Invert, (or

Indxbib), Lookupbib, (or Lookup), Roffbib and Sortbib, and

the quality of these software tools generally meet the

requirements of the proposed SuperBIB system, she thought

a large portion of work was already done, and she should

not duplicate it. She assumed wrongly that this project

63

was to develop a user interface for Bib, a bibliographic

preprocessor for Wroff, since this seemed to be the only

useful feature which is unavailable in a human engineered
(user friendly) fashion.

Nroff is a text processing facility available on the

Unix operating system. According to "Writing Papers with

NROFF Using -Me” by E. Allman, Nroff reads an input text

file prepared by its user, and returns a formatted text

suitable for publication. The input consists of text, and

requests, which give instructions to the Nroff program

telling how to format the text. According to "A UNIX

Bibliographic Database Facility” by T. Budd,

(1) Bib is a preprocessor to the Nroff (or Troff)
typesetting systems. Bib is a program for col­
lecting and formatting citation strings in docu­
ments. It takes two Inputs: a Nroff text docu­
ment and a reference file. Imprecise (incom­
plete) citation strings in the text document are
replaced by more conventional citation ones. The
appropriate references are selected from the
reference file, and commands are generated to
format both traditional citation strings and the
stand-alone bibliography.

(2) An imprecise citation string is a list of words
surrounded by ”[.” and ”.]”. Words (which are
truncated to six letters) in the Imprecise cita­
tion string are matched against reference entries
in the reference file. If an entry is found that
matches all words, that reference is retrieved to
be Included in the bibliography and the imprecise
citation string of text document is replaced by a
traditional one.

64

For example, an imprecise citation straing of "[.

brooks mythical man-month .]" retrieves the book entitled

The Mythical Man-month by F. Brooks from the reference

file. A more conventional citation string, such as [1],

will replace this imprecise citation in the text document,

and this book entry will be included in the bibliography.

The author's misunderstanding about the scope of this
project went undetected until she had spent fruitless

weeks trying to derive a set of satisfactory Logical DFDs
for SuperBIB. The author's language barrier was perhaps

one contributing factor to the prolonged misunderstanding,

since English is her second language. Problems with the

terse terminology in the Unix documents were another fac­

tor. For example, a crucial term, FORMAT, meant different
things to the project commissioner and the author. When

the project commissioner mentioned FORMAT, he meant, 'to

format a reference file which meets the requirements of

the Unix bibliographic systems'. When the author men­
tioned FORMAT, she meant, 'to format an Nroff text file so

that precise citation strings and a stand-alone bibliogra­

phy may be produced'.

But, neither the language barrier nor the misunder­

standing of these particular terms accounts completely for

65

the author's problem. In fact, such disagreement about

existing systems is common for software projects because

of the complexity of existing software systems, inadequate
documentation, unstructured source code, etc.

At the end of the design stage the author was

surprised to find out that only a binary code version of

Addbib is available in this Department, since Addbib is

not standard Unix software. The lack of source code meant

that necessary modifications on Addbib were impossible.

The author did not know Unix well enough, lacked experi­

ence, and was too confident to check the availability of

Addbib source code at an early analysis stage. If the

author had done so, she might have discovered her
misunderstanding much earlier.

2.8.3. SOLUTIONS TO DIFFERENT-VIEW PROBLEM

At the early stages of Unix-bib analysis, the author
tried to understand the current Unix-bib operations. How­

ever, she overlooked the need to document the current

operations in Physical and Logical DFDs as De Marco sug­

gested. In fact she did not document the operation in any

presentable (pleasant) form, and did not verify these

documents with the expert user-project commissioner when

it should be done. If the author had documented Unix-bib

66

as De Marco suggested at the early stage of analysis, and

walked through the documents with the expert user-project

commissioner, the different views of Unix-blb would have

been detected before any attempt was made to develop the

Logical DFDs for SuperBIB.

2.8.4. CHARACTERISTICS OF A USER INTERFACE PROJECT

Structured Analysis techniques did a good job in

analyzing the functionality of SuperBIB. However, to

analyze a predominantly user-interface software project

completely, an analysis in the human-machine interaction

area must be done.

De Marco's Data Flow Diagram techniques do not

analyze the human-machine interaction very well, due to
the fact that the presence of control information, such as
executive modules, decision-making and repetition, are

necessary. The analysis of human-machine interaction may
be done by developing certain documents such as a menu

tree, a hierarchy of menus, or a draft of a User's Guide.
The menu tree for this thesis project was not formally

developed during the analysis stage when it is most

appropriate. Although a skeleton of the menu tree was

developed during the prototyping stage of the design

stage, this menu tree was not verified by user

67
representatives, and the user feedback was not utilized

when it should have been.

2.8.5. CONCLUSIONS

The author is convinced that the analysis phase is

the most important phase in the development of the

software project. She agrees that De Marco's methods are

valuable for analyzing the functionality of any software

engineering project, except the simplest ones. A system
analyst must document the current operation, and represen­

tatives of the potential users must verify, and approve
the documentation before starting the analysis of a pro­

posed system.

In the case of a predominantly user interface pro­

ject, De Marco's Structured Analysis must be complemented

by an analysis in the human-machine interaction area. A

statement of "SuperBIB must be menu-driven, screen

oriented and employ windows” is not precise enough for the

system designer to architect the system without pondering

what the user really wants in the human-machine interac­

tion area. Based on the experience of this thesis pro­

ject, the author found that the menu tree and a draft of

the User's Guide had served well in this respect.

CHAPTER 3

DESIGN

The design phase of software development is almost as

important as the analysis phase. After a systems analyst

has identified what has to be done to solve the problem at

hand, a systems designer must determine how the solution

can be implemented. When the software design phase

begins, the systems analyst has already completed a pre­

cise document prescribing what has to be done to solve the

problem. By studying the document, a systems designer

understands the problem to be solved, an outline of a

solution, the requirements of a new system, and the basic

structure of the new system. To reduce the complexity, a

systems designer partitions the new system into modules.

The interfaces among the modules are also established in
this phase. Once the analysis and design phases are done

properly, the implementation is straightforward.

The fundamentals of software design, the principles

of a good software design, Structured Design methodology,

architectural design and prototype for SuperBIB, and a

review of the SuperBIB design are discussed in this

chapter.

68

69
2.1. FUNDAMENTALS OF SOFTWARE DESIGN

WHAT IS DESIGN?

According to Design Methods by J. C. Jones, design is

a case of decision making in the face of uncertainty, with

high penalties for error [Jones,19833. Software design is

a simulation of what a software developer wants to do

before he does it. To feel confident in the final result,

as many simulations as necessary may be performed.

As G. Bergland pointed out in "Tutorial: Software

Design Strategies" [Bergland,1981]:

None of the existing software design techniques
truly gives a procedure that can be followed step
by step, from start to finish, like a recipe in a
cookbook. The design techniques represent alter­
native plans of attack whose success or failure is
(in large measure) determined by the skill and ex­
perience of the designer. A design strategy may
work well for one class of problems but may fail
miserably for another.

3* K2. SOFTWARE COSTS AND DESIGN

According to Software Engineering Economics by Barry

W. Boehm the cost of software is escalating; by 1985 the

estimated ratio of software to hardware costs will be nine

to one [Boehm,1981]. Because the design of many programs

is less than satisfactory, or other reasons, these

70

programs are difficult to code, debug, test, modify, or

maintain, and the life-cycle costs of these programs is

high. According to Boehm, 40 % to 60/t of software money
is spent on the maintenance, modification and continued

debugging of production programs. According to Structured

Analysis and System Specification by Tom De Marco, for

every dollar spent in true development (designing and cod­

ing), three dollars are spent in revision (debugging and

testing) either before or after delivery [DeMarco,1978].

Therefore, a good software design is a necessity to con­

trol the life-cycle costs in a software engineering pro­

ject.

3.2. PRINCIPLES OF GOOD SOFTWARE DESIGN

A successful software design matches the structure of

the problem which is to be solved. A systems designer is
supposed to deal with problems in order of importance

instead of in order of execution. A good software design

results in a set of small and independent modules. These

modules are arranged in a hierarchy with the major modules

at the top of the hierarchy and the detailed modules at

the bottom.

71

2.2.±. TOP-DOWN APPROACH

The top-down approach is a variation of Julius

Caesar's "divide and conquer" strategy. According to

"Top-down Design and Testing" by E. Yourdon, the top-down

approach has been referred to as "systematic programming,"

"stepwise refinement," "levels of abstraction," "func­
tional decomposition," and a variety of other names [Your­

don, 1981 3. As Yourdon pointed out, three related, but

distinct, aspects of top-down approach are these:

(1) Top-down design: a design strategy that breaks
large, complex problems into smaller, less com­
plex problems - and then decomposes each of those
smaller problems into even smaller problems, un­
til the original problem has been expressed as
some combination of many small, solvable prob­
lems.

(2) Top-down coding: a strategy of coding high-level,
executive modules as soon as they have been
designed - and generally before the low-level,
detail modules have been designed.

(3) Top-down testing: a strategy of testing the
high-level modules of a system before the low-
level modules have been coded - and possibly be­
fore they have been designed.

According to Yourdon,

there are two extremes of top-down approach. One
is conservative top-down and another is radical
top-down. In the case of conservative top-down
approach, the software developer designs all level

72

of modules before he implements any one of them.
In the case of radical top-down approach, the
developer designs the top level of a system and
immediately implements this module before design­
ing any other lower-level modules. Normally a
software developer takes a middle-of-the-road
stance, depending on particular software project
characteristics. If a software developer has a
very tight schedule to complete his work, the
developer may adopt a method which leans toward
the extreme of the radical top-down. If a
software developer has to estimate the costs, or
schedule for a software project accurately, he is
likely to adopt a method which leans toward the
extreme of the conservative top-down. Normally a
software developer may design 50% to 75% of
modules before he implements any of these.

A bottom-up approach would be a practice where the

software developer works on all of the bottom-level

modules first, then the intermediate-level modules. The

upper-level modules are worked out last. Normally the

top-down approach is better than the bottom-up because the
top-down approach encourages the software developer to

work out the important modules first. By using the top-
down approach the complexity of the problem is reduced and

the user's needs are likely to be better served. However,

to ensure the feasibility of development in critical

modules, lower-level modules may be developed before the

higher-level modules.

One important thing about the top-down approach is

that the software developer does not start coding once the

73

analysis phase is over. The developer has bo do a certain

amount of design before he can start to implement any

module, even in the case of a radical top-down approach.

2-2.2. TOP-DOWN DESIGN

As G. Bergland pointed out in Tutorial: Software
Design Strategies [Bergland,1981]:

Top-down design encourages the software developer
to start a design simply by defining one "super"
module that will solve the whole problem and then
implementing that module with less and less
abstract semi-super modules. Sooner or later, the
developer gets down to modules that will actually
execute the tasks. This procedure is usually
called Functional Decomposition, meaning that the
main function is decomposed into successively
simpler and simpler components. Alternatively,
one can think of performing Stepwise Refinement,
meaning that the solution is successively refined
into more and more detailed explanations of how
that solution is to be brought about. In either
case, the parallel objective Is to identify reus­
able functional modules wherever possible.

Beyond the above functional decomposition, the modules

have to be relatively independent. Coupling, namely the

quantity and complexity of data passed between modules,

has to be minimized; and cohesion, namely the binding

among the program statements within a module, has to be

maximized. And these modules have to be dealt with in

order of importance, not in the order of execution

sequence.

74

3-2.2. EASE OF EXPANSION AND CONTRACTION

The ability of a software system to expand and con­

tract as the user's needs evolve is an indication of good
software design. As D. Parnas pointed out in "Designing

Software for Ease of Extension and Contraction" [Par­

nas, 1981 3,

When designing a software system, there is a ten­
dency to attempt to develop the software for the
problem as if there were only one specific problem
and one program to do that job. Instead, one
ought to design software in a manner that economi­
cally permits new features to be added or unused
features to be removed for efficiency.

In summary, the principles of a good software design

is to partition the system into smaller, independent, and
reusable modules which are arranged in a hierarchy of

importance. The high cost of software maintenance can be
controlled if software developers practice these princi­

ples.

3.3. A SUMMARY OF THE SUPERBIB REQUIREMENTS

In summary, Dr. Barr and the potential SuperBIB users

wanted SuperBIB to do these things:

(1) Accept citations (authors' names, titles, publi­
cation dates, etc.), annotations (abstracts, com­

75

ments), and other information (library call
numbers, secondary reference, etc.) in a user-
oriented fashion; Ideally, SuperBIB is menu-
driven, is screen-oriented, and employs windows.

(2) Search for and retrieve any particular reference
entry matching the search words, such as authors’
names, titles, publication dates, other search
words (key-words), or a combination of these.
Entries which match all the search words will be
selected. (Wildcard searching and selecting en­
tries which match a portion of the search words
are desired, but not required.)

(3) Print the bibliography in basic formats. (The ca­
pability of formatting a bibliography in a
variety of formats is desired, but not required.)

(4) Modify the reference information using a text ed­
itor, if desired. (The capability of modifying
without using an editor is desired, but not re­
quired.)

(5) Sort reference entries by the senior author's
names and publication dates. (Sorting by other
criteria is desired, but not required.)

3.4. STRUCTURED DESIGN AND ITS APPLICATION

There are a number of software design strategies,
such as the Structured Design Methodology (Data Flow

Design), the Jackson Design Methodology, and the Warnier-

Orr Design Methodology, etc. SuperBIB was designed by

using the Structured Design methodology, due to the fact

that SuperBIB was analyzed by using Data Flow Diagram

techniques, and Structured Design is a strategy to convert

the Data Flow Diagrams into a suitable design document,

76

the Structure Chart.

The Structured Design is a set of considerations for

making coding, debugging and modification easier, faster,

and less expensive by reducing complexity [Yourdon,1979].

According to Structured Analysis and System Specification

by T. De Marco [DeMarco,1978], the derivative techniques

of Structured Design are Transform Analysis and Transac­
tion Analysis (to be explained). Its refinement tech­

niques are design heuristics, such as coupling and cohe­

sion. The documentation tool for the Structured Design is

the Structure Chart.

2.4.±. STRUCTURE CHART

The Structure Chart is used to document the SuperBIB

design [3-13• A Structure Chart illustrates modules of
the system, interfaces among modules, and the hierarchy of

a system. The three basic elements of the Structure Chart

are these:

(1) The module, represented by a rectangular box with
a module name inside.

C3-1] See Figures 3-1» 3-2 for examples of the Struc­
ture Chart.

77

(2) The module connection, represented by a vector,
— >, joining two modules; usually the connections
mean one module has called the other.

(3) The data passed between modules, represented by a
short arrow with a circular tail, o— >.

The Structure Chart of design and the Data Flow
Diagram of analysis are similar. They both emphasize the

partition and the interface. The major difference between
a Data Flow Diagram and a Structure Chart is that a struc­

ture chart has an executive (a driver) module. In a Data
Flow Diagram, there is no executive. In addition, a Data

Flow Diagram is a document prepared by a systems analyst;
it identifies what has to be done to solve the problem. A

Structure Chart is a document prepared by a systems

designer; it spell out how the requirements of a new sys­

tem shall be met.

2.4.2. TRANSFORM ANALYSIS

The Transform Analysis applies to linear Data Flow
Diagrams that have clearly identified afferent (input)

streams, central processing, and efferent (output)
streams. According to Structured Design by E. Yourdon and

L. Constantine [Yourdon,19791* an afferent data element
is a high-level element of data that is furthest removed

from physical input, but still constitutes input to the

78

system. In other words, an afferent data element of a data

flow diagram Is an incoming datum which is in the most

sophisticated form of transformation before processing.

For example, a reference entry in a reference file is an

afferent data element for SuperBIB because a reference

entry is an input and it has been transformed thoroughly

by prefixing a percent sign (%), an appropriate key-

letter, and a space, but it has not been used for process­

ing yet. An efferent data element is a data element that

is furthest removed from the physical outputs but still
may be termed outgoing. In other words, an efferent data

element of a data flow diagram is an outgoing datum which
is in the least sophisticated level of transformation into

an output.

To design a system using Structured Design tech­

niques, a systems designer converts the Data Flow Diagrams

of the analysis phase to the Structure Chart of the design

phase. As the author mentioned earlier (Section 3*^*1)t
the major difference of a DFD and a Structure Chart is

that a Structure Chart has an executive module, but a DFD
does not. Therefore, it seems logical to find an execu­

tive process if the designer wants to convert a DFD to a

Structure Chart.

79

To initiate the conversion, a systems designer needs

to determine the central transform, an executive process,

of a system. The central transform is the process between

the afferent and efferent sides of the Data Flow Diagram.

The afferent module is the module on the afferent (input)
side, and is concerned with the function of accepting or

developing the system input. The efferent module is the

module on the efferent (output) side, and is concerned

with delivering system output. For example, ADD REFERENCE

ENTRIES and MOD REFERENCE ENTRIES are afferent modules,
FORMAT BIBLIOGRAPHY is an efferent module, and INQUIRE

REFERENCE ENTRIES is. the central transform for SuperBIB.

Once the central transform is determined, a systems

designer is to determine a top executive (driver) module
of the system. The central transform module could be a

driver. A systems designer may create a totally new

module to be a driver. Once the driver Is determined, a

systems designer places this driver at the top of a struc­
ture hierarchy. The rest of the processes (bubbles) in
the level-0 (diagram-0) Data Flow Diagram become immediate

subordinates of this driver. A systems designer replaces

the bubble of Data Flow Diagrams by the rectangular box of

a Structure Chart, due to the fact that a rectangular box

represents a process traditionally. He renames some the

80

rectangular boxes, If applicable. He also Identifies the

connections (calling and called relationships) between

modules. When these are done, a first-cut of the Struc­
ture Chart is completed.

Figure 3-1 is the first-cut of the SuperBIB design.
The author decided to create a totally new module, SUPER­

BIB, to be an executive (a driver) module of the SuperBIB

system because the central transform, INQUIRE REFERENCE

ENTRIES, does not fit the role of an executive module. To

add a reference entry into a reference file, there is no

need to retrieve any entry from the file. If INQUIRE

REFERENCE ENTRIES was the executive module, the

SUPER
BIB '

SORT
BIBMOD

BIB
FMT
BIBINQ

BIBADD
BIB

Figure 3-1 The First Cut of the SuperBIB Design.

81

relationship between ADD REFERENCE ENTRIES and INQUIRE

REFERENCE ENTRIES would not exist.

Once the executive module, SUPERBIB, is decided, all

level-0 bubbles of the SuperBIB Data Flow Diagrams become

the immediate subordinates of SUPERBIB. The author

replaced the bubble by a rectangular box. For simplicity

and consistency with the current Unix bibliographic docu­

ments, ADD REFERENCE ENTRIES was renamed ADD BIB; INQUIRE
REFERENCE ENTRIES was renamed INQ BIB; FORMAT BIBLIOGRAPHY

was renamed FMT BIB, MODIFY REFERENCE ENTRIES was renamed
MOD BIB, etc.

To proceed further in a software design, a systems

designer subdivides the afferent and efferent modules

further, if applicable.

For reason of clarity, a systems designer may add

some symbols representing procedural information; a
diamond-shaped symbol indicates a decision-making, and a

circular arrow indicates a repetition, etc. [3-2]. For

example, the executive module, SUPERBIB, must decide which

subordinate module to call, hence there is a diamond­
shaped symbol at the bottom of SUPERBIB to indicate this

decision-making. A publication entry may be written by

author and coauthors, hence ADD AUTHOR'S NAME module may

82

be called more than once for each publication entry. A

circular arrow by ADD AUTHOR'S NAME module indicates this

repetition.

3.4.3. TRANSACTION ANALYSIS

Transaction Analysis is a supplementary technique for

Transform Analysis, and is valuable for a system (or sub­

system) that processes transactions. The Data Flow
Diagram of a transaction system appears to be a network

(graph) in its shape, while the Data Flow Diagrams of a
transform system tend to be linear.

According to E. Yourdon and L. Constantine a transac­

tion is a stimulus to a system that triggers a set of

activities [Yourdon,1979]. Every transaction carries a tag

(code) to indicate its transaction type. By referring to

the tag, the system would determine what processing each
transaction required. For example, ADD BIB is a system

that processes transactions. The user's response regarding

the type of publication entry is the stimulus (transac­

tion) of ADD BIB. The types of transaction for ADD BIB Is

the type of publication entry, such as BOOK, ARTICLE FROM

[3-2] See SUPERBIB and ADD AUTHOR'S NAME of Figure 3-2.

83 /

JOURNAL, ARTICLE FROM BOOK, etc.

According to Yourdon, four basic types of modules in

the Transaction Analysis are these.

(1) Transaction-center (transaction processor)
Module, identifies the type of each transaction,
and routes the transaction to an appropriate
subordinate. For instance, ADD BIB is a
transaction-center module for SuperBIB. (Note
that a system may have more than one
transaction-center module.)

(2) Transaction Module, a module which only processes
one type of transaction. There are as many tran­
saction modules as there are transaction types.
For example, ADD BOOK is a transaction module be­
cause it does not identify, or route any type of
publications. It processes one type of publica­
tion, book entry.

(3) Action Module, processes a part of work which is
to be accomplished by its parent transaction
module. For example, ADD AUTHOR'S NAME, and ADD
TITLE are two action modules in ADD BOOK.

(4) Detailed Module, processes a part of work which
is to be accomplished by its parent action
module. By invoking the same detailed module,
similar types of transactions share common codes.
For examples, ADD NAMES is a detailed module
which is commonly needed in two action modules,
ADD AUTHOR'S NAME and ADD EDITOR'S NAME.

The transaction-center module calls each of the tran­

saction modules with no data at all. Each transaction

module is responsible for obtaining its own input and

delivering its own output.

84

Hie fundamental principle of the Transaction Analysis

is to separate the various transactions by type and to

process each transaction type separately regardless of how
similar each transaction might be. The rules are to iden­

tify common functions, and to implement the common func­

tion in a small and independent module. This principle

results in a modifiable and maintainable software system.

The advantage of SuperBIB's design is that the pro­

cessing for all the publication types is separate, so that
any change to the processing for one type of publication

will not affect any other type. For example, if the user

wants to enter information concerning publisher, or pub­

lishing city for an article entry from conference proceed­

ings (this information is not’ currently available), the

system maintainer only needs to invoke two ready-made

action modules, ADD PUBLISHER and ADD PUBLISHING CITY.

Nothing else needs to be changed.

2.5. ARCHITECTURAL DESIGN FOR SUPERBIB

The design of SuperBIB was primarily derived from the

structure of the problem to be solved, and was validated

by using the Structured Design techniques. The architec­

tural design of SuperBIB is presented in Figure 3-2.

85

2.5.1. SUPERBIB

SUPERBIB is an executive (a driver) module for the

SuperBIB system (Figure 3-2A). SUPERBIB accomplishes its

tasks by invoking its subordinates. The immediate subor­

dinates of SUPERBIB are listed below:

(1) ADD BIB, adds a reference entry into reference
file,

(2) INQ BIB, inquires of the reference entries for
given authors' names, words from titles, publica­
tion dates, other search words, or a combination
of these.

(3) FMT BIB, formats the bibliography. The formatted
bibliography may be routed to a terminal screen,
a printer queue, or a file of the user's choice.

(4) MOD BIB, modifies reference entries in the refer­
ence file by invoking a text editor, vi or ed.

(5) SORT routines, sort reference entries by the
senior author's last names and publication dates
[3-3J.

(6) HELP, displays on-line help.

[3-3] Once the user sorted the reference-file,
the sorted reference file name
becomes the new reference filename.

86

MOD
BIB

SORT
BIO

INVOKE
REF.
FILE

INVERT DESTI_
NATION

LOOKUP
RO U__
TINE

'OR MAT
tou_
’INE

SORT
ROU_
TINE

GET
FILE
NAME

Figure 3-2A Architectural Design of SuperBIB.

87

A.MULTI
VOLUME
SERIES

COM
PILED
BOOK

ADO
BOOK

ADO
OTHERS

ADD AUTHOR 1S NAME 9. add JOURNAL NAME
2. ADD TITLE (article's or bOok,s) 10. ADD VOLUME NUMBER
3. ADD PUBLISHER (ISSUER) 11. ADD ISSUE NUMBER
4. ADD PU-LISJINO CITY 12. ADD PAGE NUMBER
S. ADD PUBLICATION DATE 13. ADD BOOK ENTRY CONTAINING
6. ADD SEARCK-WDRDS (KEV-WORDS) 14. ADD EDITOR'S NAME
7. ADD OTHER INFORMATION IS. ADD TECHNICAL REPORT
a. add annotation 16. ADD MULTI-VOLUME SERIES

Figure 3-2B Architectural Design of SuperBIB.

ADD
OTHER
INFO.

ADD
TITLE

ADD
iSARCH
JORDS

ADD
ESSAY

Figure 3-2C Architectural Design of SuperBIB.

88

2.5.2. ADD BIB

ADD BIB is a transaction center (Figure 3-2B).

BIB identifies and routes all types of publications,
immediate subordinates (transaction modules) of ADD

are:

(1) ADD BOOK, adds a book entry into the reference
file,

(2) ADD ARTICLE FROM JOURNAL, adds an article entry
from a journal into the file,

(3) ADD ARTICLE FROM BOOK, adds an article entry from
a book into the file,

(4) ADD TECHNICAL REPORT, adds a technical report en­
try into the file.

(5) ADD CONFERENCE PROCEEDINGS, adds an article entry
from conference proceedings into the file,

(6) ADD COMPILED BOOK, adds a compiled book entry
into the file,

(7) ADD MULTI-VOLUME SERIES, adds a multi-volume
series entry into the file.

(8) ADD OTHERS, adds other bibliographic information
such as unpublished materials, etc.

2.5.3. ACTION MODULES OF ADDBIB

ADD

The
BIB

Based on the principle of Transaction Analysis, the

author created one action module for adding each entry

element (Figure 3-2C). The SuperBIB action modules are:

89

(1) ADD AUTHOR'S NAME, adds authors' names into a
reference file.

(2) ADD TITLE, adds a title of an article (or a book)
into the file. (Note that an article entry from
a book has two titles, an article title and a
book title. Invoke ADD TITLE to add the article
title, and ADD BOOK TITLE to add the book title.)

(3) ADD PUBLICATION DATE, adds a date of publication.
(4) ADD PUBLISHER, adds the publisher information.

(5) ADD PUBLISHING CITY, adds the city of the publi­
cation.

(6) ADD JOURNAL NAME, adds the name (title) of a
journal.

(7) ADD VOLUME NUMBER, adds the volume number of a
journal.

(8) ADD ISSUE NUMBER, adds the issue number for a
particular volume.

(9) ADD PAGE NUMBER, adds page numbers of an article.
(10) ADD BOOK TITLE, adds a title of the book contain­

ing an article which the user is interested in.
(See ADD TITLE.)

(11) ADD EDITOR'S NAME, adds editors' names.
(12) ADD SERIES, adds the name of a multi-volume

series.
(13) ADD SEARCH WORDS, adds other search words (key­

words) beyond the authors' names, words from ti­
tles, and publication dates.

(14) ADD OTHER INFORMATION, adds other information
such as secondary references, or library call
numbers, etc.

(15) ADD ANNOTATION, adds the abstract or comments of
the publication.

90

2.5.4. DETAILED MODULES

A set of three detailed (bottom-level) modules, ADD
NAMES, ADD ANNOTATION, ADD REGULAR ELEMENT, were developed

in this project (See Figure 3-2C). ADD NAMES adds

authors' (or editors') names into a reference file. In

the cases of multiple authors or editors, ADD NAMES calls

itself recursively. ADD ANNOTATION adds an annotation (an

abstract, comments) to the reference file. ADD REGULAR

ELEMENT processes the inputs for all types of reference

elements, except names and annotations.

2-5.5. NOTES FROM DESIGNER

The input for an annotation has to be the last one in

a reference entry in the current Unix bibliographic system

although no written documents have said so. The annota­
tion may be only one paragraph long although the documen­

tation says differently. To obtain more than one para­

graph of the annotation input, a blank line may be used to

separate the paragraphs of annotation. The author decided

not to do so because this would increase the number of

reference entries in the file incorrectly.

The current unix bibliographic system has adequate

inquiry, printing (formating) and sorting facilities,

91

therefore the designer decided to invoke these facilities

by using a Unix command, System, instead of developing
these features from scratch.

Pressing an ESCAPE key brings the system to the

parent menu (or module) of the current one. If the user

presses the ESCAPE key while entering the input for refer­

ence entry elements, SuperBIB escapes to the menu of

SELECT A PUBLICATION TYPE.

For simplicity of design and implementation, the

user's input for a reference entry element is written into

a reference file directly. No buffer, or temporary

storage, is provided. This implies that the user needs to

edit the reference file if he has pressed the ESCAPE key
while entering the input for the reference entry elements.

The window variables, the reference file, the files
storing the search words, and the inquiry result, and for­

matted bibliography are global variables in this thesis
project.

2-6. PSEUDO CODE OF SUPERBIB

92

2.6.1* SUPERBIB

The pseudo code of the executive module, SUPERBIB, is
listed below.

(1) Set up five windows, The characteristics of these

windows are illustrated in Table 3-1*

TABLE 3-1 The Proposed Window Layout
WINDOW
No.

SIZE
(lines)

PURPOSE

1 1 Display greetings
2 10 Display menus, or questions

from SuperBIB
3 1 Separate Windows #2 and #4
4 11 Prompt the user, and read the

inputs
5 1 Report status of SuperBIB

93

(2) Display a greeting ’SuperBIB - Super BIBliograph-
ic System1 at window #1.

(3) At window #5 display the contents of status re­
port, such as 'ADD INQUIRE PRINT EDIT SORT FILE
HELP',

(4) At window #2 display a menu containing the choice
of ADD, INQUIRE, PRINT, EDIT, SORT, INVOKE NEW
REFERENCE FILE, HELP, and EXIT.

(5) Allow the user to select one command from the
menu on window #2,

(6) Update the status report by highlighting an ap­
propriate command name,

(7) Invoke the appropriate lower-level modules to ex­
ecute the command.

(8) Exit SuperBIB if the user selected EXIT command.
Otherwise, return to the appropriate point of ex­
ecution in SuperBIB.

3.6.2. ADD BIB

The pseudo code of a representative transaction

center module, ADD BIB, is listed below.

94

(1) Display a menu containing the information of pub­
lication types - BOOK, ARTICLE FROM JOURNAL, AR­
TICLE FROM BOOK, TECHNICAL REPORT, CONFERENCE
PROCEEDINGS, COMPILED BOOK, MULTIPLE-VOLUME
SERIES, OTHERS.

(2) Display a new status report containing the publi­
cation type.

(3) Allow the user to select one of the above publi­
cation types,

(4) Update the status report.

(5) According to the publication type selected, in­
voke one of the following modules: ADD BOOK, ADD
ARTICLE FROM JOURNAL ADD ARTICLE FROM BOOK, ADD
TECHNICAL REPORT, ADD CONFERENCE PROCEEDINGS, ADD
COMPILED BOOK, ADD MULTI-VOLUME SERIES, ADD OTH­
ERS.

(6) Escape to SELECT A COMMAND menu, if the escape
switch is on.

3.6.3. ADD BOOK

ADD BOOK adds a regular book entry to the reference

file. The pseudo code of ADD BOOK (a representative of

transaction module) is listed below.

95

(1) Invoke ADD AUTHOR’S NAME. Escape to SELECT A
PUBLICATION TYPE menu, if escape switch is on.

(2) Invoke ADD TITLE. Escape to SELECT A PUBLICATION
TYPE menu, if escape switch is on.

(3) Invoke ADD PUBLISHER. Escape to SELECT A PUBLI­
CATION TYPE menu, if escape switch is on.

(4) Invoke ADD CITY. Escape to SELECT A PUBLICATION
TYPE menu, if escape switch is on.

(5) Invoke ADD PUBLICATION DATE. Escape to SELECT A
PUBLICATION TYPE menu, if escape switch is on.

(6) Invoke ADD KEY-WORDS. Escape to SELECT A PUBLI­
CATION TYPE menu, if escape switch is on.

(7) Invoke ADD OTHER INFORMATION. Escape to SELECT A
PUBLICATION TYPE menu, if escape switch is on.

(8) Invoke ADD ABSTRACT. Escape to SELECT A PUBLICA­
TION TYPE menu, if escape switch is on.

(Due to their similarities, the algorithms of the
rest of the transaction modules are omitted.)

3.6.4. ADD AUTHOR'S NAME

The pseudo code of a representative action module,

ADD AUTHOR'S NAME, is described below.

(1) Prepare the appropriate strings for prompting the
user, i.e., •«< ENTER AN AUTHOR'S NAME. »>'.

7 1 \

(2) Invoke ADD NAMES with the appropriate prompt
strings,

96

2.6.5. ADD NAMES

The pseudo code of a representative of detailed

nodules, ADD NAMES, is described below.

(1) Prompt the user for input.
(2) Read the user’s response.

(3) Exit ADD NAMES if the escape switch is on.

(4) If the user's response is not null, prefix the
user’s response with a percent sign {%), an ap­
propriate key-letter, and a space, then write the
user's response to the Unix-bib reference file.
(Refer to Table 3-2 for appropriate key-letters
recognized by SuperBIB.)

(5) Call ADD NAMES recursively in case of multiple
authors or editors.

Table 3-2 Key-letters Recognized by SuperBIB

Key_letters Description

A Author's name
B Book title
C Location (city name, etc.)

of the publisher
D Publication date
E Editor's name
I Issuer (publisher)
J Journal name
K Search words, key-words
N Issue number
0 Secondary references,

library call numbers, etc
P Page numbers
R Technical report name
S Series title
T Title
V Volume number
X Annotation

98

(1) Invoke UPDATE INDEX FILE to maintain an inverted
index file.

(2) Determine the destination of the inquiry results.

(3) Name a file to hold inquiry results, if applica­
ble.

(4) Create a file to hold search words, such as au­
thors’ last names, words from titles, publication
dates, or other search words, or a combination of
these.

(5) Call Lookbib, to search a reference file for
reference entries that match the search words.

(6) Route the search results to the terminal, a
printer queue, or a file. Note that the ability
to invoke Bib, or Nroff is not required.

3.6.7. H T BIB

The pseudo code of FMT BIB is listed below:

(1) Determine the destination of the formatted bi­
bliography.

(2) Name a file to hold the formatted bibliography,
if applicable.

(3) Determine the style of the bibliography, such as
regular or annotated, single or double spaced,
numbered or un-numbered.

(4) Invoke Roffbib to format a bibliography.
(5) Route the bibliography to a terminal, to a file,

or to a printer queue.

MOD BIB calls system editors, vi or ed, by using

Unix's system command. Note that the ability to invoke
other editors, and the ability of modifying by answering a

series of questions are not required.

3.6.9. HELP

HELP provides the user with on-line help. A sample of

proposed on-line help messages is listed below.

(1) Reference file name :____________

(2) Search-word file name : ___________

(3) Inquiry-result file name : ___________

(4) Bibliography file name : ___________

(5) Sorted file name :____________
(6) To edit, press DELETE, or CTRL-u.

(7) to advance the cursor, press SPACE BAR

(8) to select a command, press RETURN key

(9) To escape to parent levels, press ESC keys.

3.7. PROTOTYPE

The SuperBIB design was further advanced by develop­

ing a prototype. Prototyping is building a model of a

100

complex system before building the final version of it.

Prototyping is not only a valuable tool for a software

designer, but also a valuable tool for systems analysts

and programmers. However, it may lead to problems if not

used properly.

As P. Freeman suggested in his Tutorial on Software

Design Techniques, prototyping can be used in the follow­

ing areas [Freeman,19831.

(1) Prototyping is to build a subsystem which is sub­
stantially like the final system. By placing the
subsystem into service, feedback of users is col­
lected, and the subsystem is studied. Based on
knowledge of the prototype, a complete system is
developed, and the prototype is replaced. Tradi­
tionally, the main purpose of prototyping is to
collect the feedback of potential users, and to
finalize the design of the desired system. Some
prototyping primarily is to provide the users
with quick service although it may not be full
service.

(2) Prototyping can be used at each stage of develop­
ment to make decisions. At the analysis stage,
an analyst may build a prototype to get feedback
from potential users on proposed specifications.
At the design stage, a designer may prototype
several different designs to determine whether
they work, which one works, or which is the most
efficient one. During implementation, the pro­
grammer may prototype alternative algorithms to
study their properties.

The reasons for developing a prototype in this pro­
ject were to collect user feedback, and to finalize the

101

design for SuperBIB.

The prototype of ADDBIB ran well in less than a week

and valuable feedback was used to finalize the system. The

prototype of ADDBIB allowed the user to enter all entry

elements but the annotation. It did not have editing

abilities, such as character deletion and line deletion.

The user had to type the input correctly. Once he pressed

a key, there was no way to modify it except invoking a

system editor at the Shell (monitor) level. There were no

on-line help facilities either.

The prototype was presented to potential users and

their comments were collected. The major suggestions were

these:

(1) A more satisfactory way to obtain the reference
filename.

(2) A more reasonable sequence, and a more under­
standable wording of templates (prompts for in­
puts).

(3) A more intelligent status report was added to in­
form the user of the publication type.

2.8. DISCUSSIONS

102

2.8.1. DESIGN PRINCIPLE

On the basis of this project, the author agrees that

the principles of a good software design are correct and

should be followed closely.

The author designed the SuperBIB system using the

principles of a good software design. SuperBIB is com­

posed of relatively small and independent modules, and

these modules are arranged in a hierarchy of importance,

instead of execution sequence. The executive module,

SUPERBIB, is a "super” module that theoretically would

solve the whole problem by invoking subordinate modules.

For example, ADD BIB adds reference entries into a refer­

ence file. Most of the common functions were identified

and designed as independent modules so that these modules
may be re-used. The changing needs of the user may be

served better because SuperBIB was designed with ease of

expansion and contraction in mind.

2-8.2. STRUCTURED DESIGN TECHNIQUES

The author followed closely the techniques of Struc­

tured Design (Transform Analysis, Transaction Analysis,

etc.,) but she did not find that these design methods were

particularly useful in this thesis project. SuperBIB could

103

be designed by merely using the principles of good

software design, and some educated common sense. In her

opinion, the effort spent in designing SuperBIB using

rigid Structured Design methods did not pay off very well.

The SuperBIB design did result in a relatively clean

structure, the development was relatively trouble-free,

and the potential maintenance costs should be minimized.
The author agrees that these rigid Structured Design tech­

niques are useful in validating SuperBIB design although

the effect of using rigid Structured Design techniques in

this project was not significant. Perhaps this was due to

the fact that the size of this project was relatively

small. Only one software developer was involved. If the

size of a software project is too large for one software

developer to work on, a team of developers may be assigned
to the project. A small team may be composed of two

software developers. A large team may , have over two
thousand software developers. For a project of this size,

the complexity of the problem is very great. To partition

the large system appropriately, and to wisely assign

modules to software development teams, perhaps the Struc­

tured Design techniques become a necessity.

104

3.8.3. MENU TREE AND USER'S GUIDE

The author found that a good way to communicate with

the user in a predominantly user-interface project is to

develop a menu tree, a hierarchy of menus, and by develop­

ing a draft of the user's guide. Due to the fact that

developing a menu tree requires less labor and costs less,

the author recommends that a menu-tree should be developed

first, then a rough draft of a user's guide should be

developed. These jobs should have been done by the

analyst in the analysis stage, however the designer should

cover these jobs if the analyst has not done so. In

either case, the document should be verified by the

representatives of the user.

In this thesis project, the author did a certain

amount of work in menu-tree area shortly before she proto­

typed the system, but the document was not in any present­

able (pleasant) format and she did not verify ("walk

through") it with the user. During the prototyping stage,

crucial decisions were made by guessing the users' needs

(or preferences) and hoping that the users would like

these guesses.

105

2-8.4. PSEUDO CODE

The author regrets that most of the pseudo code for

SuperBIB was not done in a presentable (pleasant) form

[3-4]. The author documented some modules in pseudo-code

before prototyping. But these documents were not in any

presentable form, therefore the author did not get too

much benefit out of these.

The author believes that it is advantageous to docu­

ment everything in a presentable form. Preparing a

presentable document in itself gives the software

developer a second chance, to think the whole thing over.

The presentable form of documents can be recognized next

morning, and beyond. Furthermore, a presentable document
equips the software developer with a medium to communicate

with other software developers, and the user, if neces­

sary.

The author believes that the prototypes could have

been neater if she documented the pseudo code in a

presentable form, walked through it, and referred to it

during development. While doing prototyping, the author

[3-4] The pseudo-code was not formally documented un­
til the time of writing this chapter.

106

found herself more than occasionally forgetting to refer

to design documentations because she was not well-

organized during the course of project development, and
she was trying to do too many things at the same time.

She thought that she remembered the design well, and the

design documents were not all in a pleasant (or present­

able) form, therefore sometimes she did not refer to the

design documents when she should have.

2-8.5. PROTOTYPING

The author believes that it is usually too expensive

to prototype a system, therefore it should be avoided, if

possible. A menu-tree and preliminary copy of the user's

guide would be a better alternative, and can usually do

the job well. For instance, if the user does not like to

name a reference file before selecting a command, it is

very easy to make the changes in a menu-tree. It will

take a little longer to revise the user's guide. Defin­
itely it will take much longer to modify, compile, debug,

and test the code.

In this thesis project, prototyping seems to be jus­

tified because the author was a novice Unix and C-language

programmer and it is the designer's responsibility to

ensure that her design works (at least in one way). It

107

seems appropriate that the author prototyped the system in
order to finalize her design.

2.8.6. ANALYSIS PHASE IS MOST IMPORTANT

Based on the experience from developing this thesis

project, the author believes that it is absolutely true

that the analysis phase is the most important phase in the

software life-cycle. If the analyst failed to prescribe

precisely the human-machine aspect of the system, it is

likely that the designer might not design this part. This
would leave the programmer (or coder) to perform the

analyst's and designer's duties while coding (or prototyp­

ing) the system. And the user's needs are not likely to
be served well in this way.

Due to the fact that in this project the analyst, the
author, did not analyze the human-machine interaction in

precise terms during the analysis phase, therefore the
designer, the author, did not formally design the human-

machine interaction (at least not in a presentable form).

Also she did not walk through her design in the human-

machine interaction area with the user. To make the

matter worse, the pseudo-code was not done in a present­

able form either. The author felt that she was like a

coder who was forced to perform the analyst's job, and was

108

forced to make design decisions. The result is that the

shortcomings of the first release of SuperBIB were

apparent. To remedy this problem, the author had to

iterate the analysis, design (redesign), and implementa­
tion of SuperBIB.

CHAPTER 4

IMPLEMENTATION

Implementation (coding and testing) is relatively

straightforward once • the analysis and design have been
done properly.

The principles of good software implementation, the
techniques of structured programming, top-down coding and

top-down testing, the implementation of Superbib, and the

problems encountered are discussed below.

4.1. PRINCIPLES OF GOOD SOFTWARE IMPLEMENTATION

4.1.K TOP-DOWN IMPLEMENTATION

Top-down implementation is a strategy of coding and

testing high-level, executive modules as soon as these
modules have been designed, and generally before the low-

level, detail modules have been designed, and definitely

before these are coded or tested.

The bottom-up approach is a practice where the
software developer works on the bottom-level modules

first, then the intermediate modules. The upper-level
modules are developed last. In a bottom-up development,

109

110

the major conditions of the system are usually not known

until the integration phase, when there is not enough time

to deal with the problems which arise when the modules are

brought together. In the top-down approach, the major

interfaces of the system are tested at an early stage, and

problems can be' solved while there is still time to do so.

Usually, the top-down approach is better than the bottom-

up, but sometimes critical modules should be developed

first, even if these modules are lower in the hierarchy of

a design tree (Structure Chart). Top-down development has

positive effects on reliability, and, indirectly, on the

programmer’s productivity.

According to Yourdon, the advantages of top-down

implementation are these:

(1) Major interfaces are exercised (tested) at the
early implementation phase. The top-down ap­
proach exercises the major interfaces at an early
stage, hence reducing the chance of discovering
major design flaws. In the bottom-up approach,
major Interfaces usually are not tested until the
very end. If design flaws were discovered at the
end of development, major recoding is needed
while the deadline problem is too sensitive to
deal with.

(2) Users can see a working demonstration of the sys­
tem at the early stage of development. The
software developer can demonstrate a skeleton
version of the system to the potential user at an
early stage before he has wasted a great deal of
time coding from inaccurate analysis or design

111

documentation.

(3) Debugging is easier. Debugging is easier in a
top-down implementation because the top-down im­
plementation tends to be incremental in nature.
A software developer usually adds one new module
to an existing skeleton of the system. If the
new system misbehaves, the developer knows the
problem must be located in the new module, or in
the interface between the new module and the rest
of the system. The developer may even remove the
new module, reinsert the stub (dummy module) and
try to debug it. Note that in the top-down im­
plementation, the lower-level modules that have
not been coded are substituted by a stub (dummy
module), which is relatively inexpensive compared
to a test driver of a bottom-up implementation.

(4) Top-down implementation eliminates the need for a
test driver, since the existing skeleton system
can serve as a test driver. At bottom-up imple­
mentation, a test driver, which is more expensive
to code, is required.

4.1.2. STRUCTURED PROGRAMMING

Structured Programming was first mentioned in "Notes

on Structured Programming," by E.W. Dijkstra. The lack of

a precise definition of Structured Programming has con­

fused many software developers. General characterizations

of Structured Programming are these:

(1) Structured Programming includes top-down develop­
ment .

(2) Structured Programming means to program using
disciplined structures, such as sequence, condi­
tional statements (IF THEN ELSE, CASE, SWITCH),
and repetition statements (DO WHILE, DO UNTIL).

112

(3) Structured Programming is programming with the
controlled use of GOTO statements, but it should
be characterized by the presence of structure,
not by the absence of GOTOs.

Structured Programming does not mean a software
developer absolutely cannot use GOTOs, it means to imple­

ment software in a simple, structured and disciplined way,
so that the software can be produced faster, cheaper, and

the product will be more reliable, and maintainable.

4.2. IMPLEMENTATION ENVIRONMENT FOR SUPERBIB

4.2.1. UNIX PROGRAMMING ENVIRONMENT

According to M. Waite, in 1983. around the United

States there were more than 8000 Unix installations, sup­

porting over 200,000 users [Waite]. Why is Unix so popu­
lar? Why do so many software developers prefer to do

their work in Unix?

The reasons are these:

(1) Unix is adaptable. Unlike other operating sys­
tems (which are written in Assembly Language)
Unix is written in a relative high-level
language, the C language. It is not easy to
transfer an operating system, (or programs writ­
ten for it), to other types of computers if the
operating system is written in Assembly language,
due to the fact that the assembly languages of
different computers are significantly different.

113

However, it is easy to transfer Unix, its utility
programs, or its application programs, to other
types of computers because most of Unix software
is written in a relatively high level language,
the C language. As long as the host-computer-
to-be has a C compiler, the transfer could be
done relatively easily.

(2) The Unix Shell is a programmable command inter­
preter. It accepts the commands typed on the
user's terminal, and invokes appropriate programs
to execute the command. Most operating systems
have command interpreters which are not programm­
able. The programmability of the Unix Shell pro­
vides a great power to the software developer.

(3) Unix has a library of software tools. These
tools are relative simple; they do one thing and
do it well. These tools can be connected (piped)
together to do complex tasks. Due to the fact
that the Unix Shell is programmable and the abil­
ity to pipe the output of one software tool to be
the input of another tool, software developers
often avoid programming from scratch.

(4) Unix provides many major programming languages,
such as FORTRAN, COBOL, Pascal, C and LISP. Some
other languages, such as APL, LOGO, RPG, and RP-1
are available on specific Unix systems. Program­
ming debugging tools are also available.

(5) Unix provides Programmer's Workbench for large
software development. Programmer's Workbench is a
package of Unix tools which simplifies the pro­
gram transfer between computers. It also records
all the changes made to the programs so that any
earlier version of a program may be recreated at
any given time. It also allows programs to be
tested in part as they are developed.

4.2.2. SOFTWARE PROJECT MANAGEMENT SYSTEM

The Unix Software Project Management System (SPMS)

techniques were used to manage the Superbib development

114

[Nicklin,1983]. SPMS is a system for the management of

medium to large-scale software systems. SPMS provides a

number of commands which simplify tasks associated with

program development and maintenance in the Unix environ­

ment. Changing directories in a regular Unix directory

tree requires the user to remember the precise position of

the directories in the tree. To move to a brother-or-

sister directory, first it is required to move up to the

parent level then move down to the directories desired.

In the SPMS directory tree, changes of directories are

straightforward. It is not required to move up to the

parent directory in order to move to brother-or-sister

directories. Therefore, the precise location of the direc­

tories in the directory tree does not need to be specified

or memorized.

An SPMS project directory was built during Superbib's

development. The directory tree is illustrated in Table

4-1.

Mote that SRC DIR is a directory for storing all

source-code files, DOC DIR is a directory for storing all

documents for the SuperBIB project, and WORK DIR is a

working directory for the author to develop the SuperBIB

software. Once a source file, or document had been com-

115

Table 4-1 SPMS Project Directory Tree for SuperBIB

I author's I
I home I
I directory I

11
1 superbib 1
1 project 1
1 directory I

) 1 (
I work 1 1 src 1 I doc I
I dir. 1 I dir.1 I dir.j

pieted, it was copied into appropriate directories for

security reasons.

4.2.3. choice OF PROGRAMMING LANGUAGE

Superbib was coded in the C language. The primary

reason was the author's intention to use a package of
library functions, Screen Updating and Cursor Movement

(Window Package) [Arnold]. Window Package, written in the
C language, may be used to move the cursor from any place

to another on a terminal screen. It may be used to get

116

inputs from the terminal in a screen-oriented fashion.

This package allows the C programmer to do the most common

type of screen-oriented and window functions with ease.

The C language is a programming language developed by

D. Ritchie at Bell Labs around 1972. It is an offspring of

Algol-60. The C language is a relatively low-level

language that allows the programmer to access machine and
operating system features. Thus, a program written in the

C language may achieve maximum computing efficiency. It is
also a relatively high-level language that can hide many

of the details of the computer architecture. Thus, a pro­

gram written in the C language promotes the programming

(or the programmer's) productivity. Programs in the C

language run fast and take little storage space. The abil­

ity to build a complex program out of simple elements is a

great strength of the C language.

The C language is the most basic tool of Unix. Most

Unix software was coded in the C language. Nearly all

software tools supplied with Unix were written in C. The

Unix environment supports various programming languages,

such as Pascal, APL, FORTRAN, etc. However, a program

written in the C language interfaces better with the Unix

programming environment.

117

The disadvantages of the C language is that the pro­

grams written in C are too compact to understand at first

glance. Perhaps a better choice of the programming

language for this project would have been Modula-2, due to

the fact that the programs written in Modula-2 can have

better modularity.

4.3. SUPERBIB IMPLEMENTATION

Superbib implementation was done by using Top-down

coding and testing, and Structured Programming techniques.

An executive module, Main, could add reference entries,

inquire reference files, produce a bibliography, modify

reference entries, and sort reference entries. SUPERBIB

does these by invoking a number of lower-level modules,

such as ADD BIB, INQUIRE BIB, FORMAT BIB, MOD BIB, and

SORT BIB. These modules accomplish their tasks by invok­
ing lower-level modules, such as ADD JOURNAL ARTICLE, ADD

TECHNICAL REPORT, etc. These modules accomplish their

tasks by invoking lower-level modules, such as ADD

AUTHOR'S NAME, ADD TITLE, etc. These modules accomplish

theirs tasks by invoking the three bottom-level modules,

ADD NAMES, ADD ANNOTATION, and ADD REGULAR ELEMENT. ADD

NAMES adds the names of the authors (or editors). ADD

ANNOTATION adds the inputs of an abstract, or readers’

118

comments. ADD REGULAR ELEMENT adds the rest of the ele­

ments .

These modules are arranged hierarchically in the

order of importance. The executive module was coded and

tested first. A stub (dummy module) was used whenever a

higher-level module calls a lower-level module which has
not been implemented. The modules were coded in a discip­

lined way— using sequences, conditional and repetition

statements. A few GOTOs were used in a controlled way.

For example, GOTOs were used to exit the help facility and

return to the command menu, or to escape to a parent

module if the user wants to exit a current module prema­

turely.

SUPERBIB SOURCE FILES AND MODULES

The SuperBIB source-code files and its modules are

presented in Table 4-2.

4.3.2. HEADER FILE

A header file, bib.h, contains the declaration of

global variables, definitions of symbolic constants, etc.
bib.h was included in the executive module, main during

the compilation.

119

Table 4-2 The SuperBIB Source-code
Files and Modules.

File Modules Defined in The File
bib.h
superbib.c
getfile.c
read_string.c
addblb.c

askbib.c

fmtbib.c
modbib.c
sortbib.c

helpjnsg.c
exitbib.c
invertf.c
destination.c

main
get_file
getstring
add_ref
add_conference_proceedings
add~article_from_book
add jnulti_volume_ser ies
add_edited_book
add_article_from_journal
add_technical_report
add_any_type
add_author
add_city
add_keywords
add_others
add_abstract
add_page
add_editor
add_art_in_book_title
add_serles_name
add_volume
add~journal_name
add_number
add_report
add_regular_element
add_names
add_essay
search_ref
lookup_routine
print_bib
roffbib_routine
modify_ref
sort_ref
sort~routine
print_help
die
invert_file
destination routine

120

4.3-2. NAME A REFERENCE FILE

A module, Get file in Getfile.c, is to name a refer­

ence file [4-1]. Primarily get file does this task by

invoking getstrlng in read string.c.

4.3.4. SUPERBIB'S EXECUTIVE MODULE

An executive module, main in superbib.c, is developed
to drive the whole SuperBIB system.

The algorithm of the executive module is listed

below.

(1) Include all SuperBIB's source-eode files listed
in Table 4-2.

(2) Set up four windows (windows #1,2,4,5). Note
that window #3 was deleted to make more room on
the screen for window #2.

(3) Display Superblb greeting 'SuperBIB - Super BI-
Bliographic System' at window #1,

(4) Display the contents of status report, such as
'ADD INQUIRE PRINT EDIT SORT INVOKE NEW REFERENCE
FILE HELP' at window #5

(5) Invoke get file, to name a reference file, if it
is the first cycle of SuperBIB execution,

[4-1] Names appended with 1.c' indicate source-code
files written in the C-language.

121

(6) Display a menu, SELECT A COMMAND, for a choice of
commands - ADD, INQUIRE, PRINT, EDIT, SORT, IN­
VOKE NEW REFERENCE FILE, HELP, and EXIT.

(7) Allow the user to move the cursor up and down the
menus by pressing the space bar; to select a com­
mand by pressing the RETURN key,

(8) Update the status report once the user has made a
selection,

(9) According to the user’s selection, invoke one of
the following modules in addbib.c:

add ref,
to add entry elements into the file,

search ref,
to search entries in the file,

print bib,
to print the bibliography,

modify ref,
to edit the file,

sort ref,
to sort entries in the file,

get file,
to get a reference filename,

print help,
to get on-line help.

(10) Invoke die, to exit SuperBIB if the user selected
EXIT. Return to SELECT A COMMAND menu, if the user
selected ADD, HELP, or INVOKE A REFERENCE FILE. Oth­
erwise return to WIN (window) SETUP to re-setup the
windows. (Note that commands of EDIT, INQUIRE, and
PRINT would destroy the window setup, therefore it
should be reset.)

4.2.5. ADD REFERENCE ENTRIES

The module add ref in addbib.c, adds citations

(author names, titles, publication dates, etc.), annota­

tions (abstracts, comments), and other information to a

122

reference file. The algorithm of add ref is listed below.

(1) Display a menu containing all types of publica­
tion entry - BOOK, ARTICLE FROM JOURNAL, ARTICLE
FROM BOOK, TECHNICAL REPORT, CONFERENCE PROCEED­
INGS, COMPILED BOOK, MULTI-VOLUME SERIES, and
OTHERS.

(2) Allow the user to press the space bar to advance
the cursor, to press the RETURN key to select a
publication type, or to press the ESCAPE key for
an escape to the parent menu, SELECT A COMMAND.

(3) Update the status report by highlighting ADD and
the publication type selected. The publication
types are abbreviated as follows: BOOK, ARTICLE/J
(article from a journal), ARTICLE/B (article from
a book), REPORT (technical report), COMPILED
(compiled book), SERIES (multiple volume series),
OTHERS (unpublished).

(4) According to the publication type selected, in­
voke one of the following modules in addbib.c:

add regular book,
to add a book entry,

add journal,
to add an article entry from a journal,

add article in book,
to add an article entry from a book,

add technical report,
to add a technical report entry,

add conference proceedings,
to add a conference proceedings entry,

add edited book,
to add a compiled book entry,

add multi volume series,
to add multi volume series entry,

add any type,
to add unpublished information.

(5) Escape to SELECT A COMMAND menu if the escape switch
is on. (Note that the switch is on, if the user
wants to exit certain modules prematurely.)

123

4-3.6. ADD REGULAR BOOK ENTRIES

A module, add regular book, in addbib.c, adds a regu­

lar book entry to a reference file. The algorithm of
add regular book is listed below.

(1) Invoke add author to add an author's name to the
file. Escape to SELECT A PUBLICATION TYPE menu,
if the escape flag is on.

(2) Invoke add title to add a title entry to the
file. Escape to SELECT A PUBLICATION TYPE menu,
if the escape flag is on.

(3) Invoke add publisher, to add a publisher entry to
the file. Escape to SELECT A. PUBLICATION TYPE
menu, if the escape flag is on.

(4) Invoke add city, to add a publishing city to the
file. Escape to SELECT A PUBLICATION TYPE menu,
if the escape flag is on.

(5) Invoke add publication date to add a date of pub­
lication to the file. Escape to SELECT A PUBLI­
CATION TYPE menu, if the escape flag is on.

(6) Invoke add keywords to add additional search
words to the file. Escape to SELECT A PUBLICA­
TION TYPE menu, if the escape flag is on.

(7) Invoke add others to add reader's comments,
secondary references, library catalogue numbers,
or other information into the file. Escape to
SELECT A PUBLICATION TYPE menu, if the escape
flag is on.

(8) Invoke add abstract to add an abstract entry to
the file. Escape to SELECT A PUBLICATION TYPE
menu, if the escape flag is on.

(9) Write a blank line to the reference file to
separate each publication entry.

m

Note that due to the strong similarity, the algo­
rithms of the following modules are omitted:

add journal,
add article in book,
add technical report,
add conference prooeedings,
add edited book,
add multi volume series,
add any type.

4-2.7. ADD AUTHOR NAMES

The module add author, in addbib.c is to add authors'

names to the file. The algorithm of add author is listed

below.

(1) Initialize the following strings for prompting:

prompt 1 : «< ENTER AN AUTHOR'S NAME. »>
prompt2 : AUTHOR
prompt3 : «< MORE AUTHOR'S NAMES? »>

(2) Invoke add names with the above prompt strings and a
key-letter, A, as actual parameters. For example,
'add_names (promptl, prompt2, 'A', prompt3)' is a le­
gal function call.

4.3.7.1. ADD NAMES

A module, add names, in addbib.c, adds the authors'

(or editors') names into the reference file. The algorithm

of add names is listed below.

125

(1) Signal the user by prompting '«< ENTER AN
AUTHOR''S NAME. » > ’, prompt 1.

(2) Display instructions, such as 'Enter given name
first.', and 'To bypass, press RETURN.'-, etc.

(3) Display the prompt (prompt2) for inputs at the
next available line position (line_pos) of window
#4. (Note that up to ten lines of the biblio­
graphic information can be displayed at window
#4.)

(4) Read the input in by invoking getstring, of
read string.c.

(5) If the escape flag is on, exit this module. Oth­
erwise do the following steps:

(6) Skip leading spaces.

(7) If the input is not null, prefix the input string
with a percent sign (5E), a key-letter (A or E)
and a space. Write these strings to the refer­
ence file.

(8) Get ready for next element inputs by writing a
new-line symbol to the file.

(9) Call ADD NAMES recursively, if there are multiple
authors' names.
Note that due to their similarity, the algorithms

of add essay, and add regular element are omitted.

4.2.8. SEARCH REFERENCES

A module, search ref, in askbib.c, allows the user to
inquire the reference file, The user may search for:

authors' or co-authors' last names, words from the title,

other search words (key-words), or a combination of the

above.

126

The algorithm of search ref is listed below.

(1) Display instructions about inquiry.

(2) Invoke invert file, to create, (or update) an in­
verted index of the reference file. This can be
done by using ' system (’’invert
reference_filename”); '.

(3) Determine the destination of the inquiry result.
The possible destinations are the terminal
screen, printer, or file.

(4) Create a file to hold search words.

(5) Determine the name of the file to store the in­
quiry result, if the user has indicated that the
destination is a file.

(6) Invoke Lookbib to search for the search words
(key-words) by using ' system ("lookup
reference_file_name’’) *, '.

(7) Route the inquiry result to the destination
specified.

4.3.9. PRINT BIBLIOGRAPHY

A module, print bib in fmtbib.c, prints the stand­

alone bibliography. The bibliography can be routed to a

terminal screen, a printer, or a specified file. This

module does the following:

(1) Display instructions about printing the stand­
alone bibliography.

(2) Determine the destinations of the stand-alone bi­
bliography. The possible destination are the ter-

127

minal, the printer, or a file.

(3) Determine the name of the file to store the bi­
bliography, if the destination is to be a file.

(4) Determine the style of the bibliography, such as
single or double spaced, etc.

(5) By using ' system ("roffbib reference_filename")
', invoke Roffbib to produce the bibliography.

(6) Route the bibliography to the destination speci­
fied.

4.3.10. MODIFY REFERENCE FILE

A module, modify ref, in modbib.c, allows the user to
modify the reference file by invoking an editor. Modifi­

cation of the reference file by answering questions is not
implemented. The algorithm of modify ref is listed below.

(1) Determine the method of modifying - by invoking
editors, or questions & answers.

(2) If the user chose to invoke an editor, determine
which editor the user wants - vi, ed. Otherwise
print appropriate messages.

(3) Invoke the editor by using the Unix System com­
mand.

4.3.1J. SORT REFERENCES

The algorithms of sort ref in sortbib.c is listed

below.

128

(1) Display instructions about sorting the reference
entries,

(2) Determine the destinations of the sorted refer­
ence entries. The possible destination are the
terminal screen, the printer queue, or a file of
the user's choice.

(3) Determine the name of the file to store the sort­
ed reference entries, if the destination is to be
a file.

(4) By using 'system ("sortbib
reference_filename'');', invoke Sortbib to sort
the references.

4.3.12. EXIT SUPERBIB SYSTEM

A module, die, in exitbib.c, terminates Superbib

properly by calling endwin from Screen Package.

4.3.I3. INDEX FILE OF THE BIBLIOGRAPHIC DATABASE

A module, Invert file, in invertf.c, creates (or

updates) an inverted index for the reference file by using

'system ("invert reference_filename");'.

4.3.t4. ON-LINE HELP

A module, print help, in help msg.c, displays on-line

help messages.

129

4.4. PROBLEMS ENCOUNTERED

The implementation for ADD BIB (addbib.c) went

smoothly, due to the fact that this function is completely

decomposed according to the structure of the problem.

Very few bugs were encountered in the development of ADD

BIB. The only problem encountered in the ADD BIB develop­
ment was the lack of editing capabilities, i.e., character

deletion and line deletion in Window Package. The author
adapted a small module, GET STRING, from "Comprehensive

Data Collection System" by J. Scott Mulligan and Murali

Veeramoney to read a String from the terminal and do the

deletions, if necessary.

The author wanted to invoke the editor in one of the

windows (window #2), and leave the rest of the windows
intact. The idea was to provide the user with on-line

help, status report, and greeting, while he is using the

system editor. However, the idea did not go through

because of the complexity of implementing this feature.

In order to do so, it was required to open a process with
the editing command as an argument by using Popen, read

and write the contents of the information that the editing

session encountered by using fgets and wprintw, and then

close the process by using pclose.

130

A syntax error in the declaration of pointer vari­

ables, such as using ' char #var = "XYZ"; while the

correct format is 1 char *var; and attempts to use the

above variable, var, as an array, were detected by neither

the C compiler nor lint, a program that reports potential

errors of the user's application programs. Despite the

above misdeclaration and misuse, the program would execute

properly most of the time. But the programs would quit

working correctly at certain points of execution. The
author suspects that the C compiler did not consider the

variable, var, as a pointer since it had not been declared

correctly. The author also suspects that although she had

not allocated space for the variable, var, while using it

as an array, the compiler found space for the variable,

and the program would execute fine. But the space ran out

at a certain point of execution, and the programs quit

working properly.

The author suspected that the misdeclaration and

misuse caused troubles in the implementation of INQUIRY

BIB, the search and select routine of SuperBIB. The

author could not redirect the inquiry results to a file of

the user's choice, while she had successfully redirected

the output of any other Unix command to files.

131

Some mysterious inconsistencies of the performance of

Window Package, such as irregular cursor movements, or
characters left over from previous screen images, after

clearing up, were suspected to be related to the misde­

claration and misuse.

4.5. CONCLUSIONS

Based on the implementation of this thesis project
the author feels that the principles of good implementa­

tion are correct. Using the top-down coding, top-down
testing and structured programming techniques did result

in relatively reliable and maintainable software. The
software developed by practicing these good implementation

principles does result in a relatively short development

time, hence the life-cycle costs are controlled.

The author agrees that software should be developed

as tools. These software tools are relatively simple. A

tool does only one thing, but it does it well. A large

software system should be developed by using appropriate

software tools. Programming from scratch should be

avoided unless no tools are available. In this sense, the

author agrees that Unix is a very good programming

environment because of the large collection of software

tools in Unix.

132

The author agrees that SPMS helped her to manage the

development of the SuperBIB project. SPMS served as a

project librarian for her. Once she had completed some­

thing she checked the product into an appropriate SPMS

project directory. The materials in that directory can be
checked if desired, but the check-in is controlled care­

fully to avoid potential hardship, such as overwriting a

file accidently. The author did not utilize the full power

of SPMS, due to her limited understanding of this subject.

The management of this thesis project would have been even

easier, if she had known SPMS better.

>

CHAPTER 5

CONCLUSION

The SuperBIB project achieved its goal of making a

bibliographic system (Unix-bib) more useful by adapting

human-engineering techniques that are commonly applied to

microcomputer software to a mainframe environment.

This chapter discusses the adaptation of human-
engineering techniques to the mainframe environment, bene­

fits and problems of the adaptation, the software

engineering techniques adopted, and directions future work

on this project might take.

5.U HUMAN-ENGINEERING

5.1..1. WHAT ARE HUMAN-ENGINEERING TECHNIQUES?

Human-engineering techniques are the techniques that

harmonize the communication between human being and com­

puter. Usually, these refer to the menus, windows,

reverse videos, etc. The menu provides all of the options

the user has at one point of the execution, therefore it

is easier for the user to utilize the computer. Windows

provide a dialogue between the computer and the person who

133

134

uses it, therefore the computer appears to be more

friendly. The reverse video highlights certain things,

and brings the user's attention to important points,
therefore it is desirable.

5.JL2. WHY NOT IN MAINFRAME?

These human-engineering techniques have generally not
been applied to mainframe software because:

(1) historically, mainframe software was batch-
oriented,

(2) historically, mainframe software was based on the
old-fashioned, paper terminals. The older
paper-based terminals lack the direct cursor ad­
dressing capabilities, etc., therefore screen-
oriented features cannot be implemented.

(3) the mainframe user is often expected to be more
sophisticated.

The extra overhead encountered by executing human-

engineered software may be a problem in a busy, or over­

loaded mainframe environment. A wide variety of terminals

(or personal computers) that mainframe software may
encounter is another problem, because different types of

terminals often have different settings (escape

sequences). The software developer may have to write a

driver program for each type of terminal (or personal com-

135

puter) that may communicate with the screen-oriented main­

frame software. The microcomputer (personal computer)

software does not have this problem because it only deals

with one type of terminal.

5.1.2. THEORY AND HYPOTHESIS

The author's theory and hypothesis are correct. She

theorized that people still use manual methods to prepare

and maintain their bibliographic information primarily

because the current automated systems are not easy to use.

Hypothetically, by adapting human-engineering techniques,

programs can be made easier to use, hence more widely

used.

5-1.4. TRANSITION TO MAINFRAME

The author successfully adapted the human-engineering

software techniques to a mainframe environment, the VAX

750/780/785 running under Berkeley Unix 4.2. The human-
engineered version of Unix-bib is named SuperBIB. The

problems encountered during the transition are discussed

below.

136

5-M-i* A VARIETY OF TERMINALS

Several common types of terminal, such as H19, VT100,

and Z29, are compatible with SuperBIB. One very rare type

of terminal, ADDS-Regent25, is partially compatible. Vt52
terminals, now a rather rare terminal on this campus, is

not compatible. The rest of the terminal types are

untested or unconfirmed.

The author did not experience problems with H19 or

Z29 terminals during the project development. She had
slight problems with the VT100 terminals. It seems that

the problem disappeared when she eliminated an illegal

piece of syntax which had escaped the detection of both

the C compiler and lint, a program to report potential

errors in application programs. These program development

tools are apparently flawed; the VT100 terminal, so far as

she can tell, works perfectly with SuperBIB.

SuperBIB should function appropriately if the user

has his '.login' file set up correctly, and uses common UM

terminals, such as the H19, VT100, or Z29. Setting up the

terminal automatically is accomplished by including " set
term= '/etc/ttype' " in the user's ".login” file. How­

ever, this only sets up a few common types of terminals,

such as H19, Z29, and VT100, on the University of Montana

137

campus.

A few users may have to specify the type of their

terminals by typing 'setenv TERM XYZ' before invoking

SuperBIB, if they use a rare type of terminal, or their

'.login' files do not set the terminal type automatically.

For instance, to set up Advanced Digital Data System's

(ADDS) Regent25 terminal, a rare type of terminal at UM,

the user may type 'setenv TERM regent25’•

For other types of terminals, the user must determine

the name that Unix is using for his type of terminal by

using 'fgrep XYZ /etc/termcap' command, where XYZ is a

guessed terminal name that might be used in the Unix ter­

minal capability database, Termcap. For instance, type

'fgrep reg /etc/termcap' to determine Termcap's name for

Regent terminals. To set up a TRS-80 personal computer to

appropriate capabilities, type 'fgrep trs /etc/termcap' on
the screen to confirm the Termcap name that Unix is using

for referring to TRS-80 personal computers. If the name,

trs, is confirmed, then type 'setenv TERM trs' to set up

the correct mode for a TRS-80 PC.

138

5.1.4.2. REVERSE VIDEO

SuperBIB uses reverse video to indicate the current
command in use. Certain older types of CRT terminals,

such as ADDS Regent25 terminals, do not have reverse video

capabilities, therefore this feature does not work at

those terminals.

5-1.4.3. 300-BAUD LINKS

The execution speed of SuperBIB was quite slow on

300-Baud terminals. The slowdown was especially obvious

while SuperBIB drew boxes on the screen. Furthermore,
Arnold's Window Package does not have the capability to

change only the contents inside boxes, while leaving the
boxes intact. To speed the system up while operating

SuperBIB from 300-Baud terminals, the author decided not

to draw boxes at all.

5.1.4.4. LACK OF EDITING POWER

The author adopted Arnold's Screen Updating and Cur­

sor Movement Package (Window Package) to do the common
type of window and screen-oriented operations. The Window

Package successfully interfaced with the Unix environment
and the bibliographic software tools, such as Roffbib,

etc. However, the Window Package lacks certain built-in

139

editing capabilities. To delete a character, Window Pack­

age must execute Delch (); to delete a line, it must exe­

cute Deleteln (). As the Window Package stands now, the

user cannot edit while entering the input from a terminal.

The author had to adapt a small module to do the editing

while taking input from a terminal. The editing capabili-̂

ties must be restored again while invoking Lookbib, the

bibliographic search routine, where the user supplies the
input from terminals.

The author suspects that while invoking the ed edi­

tor, the normal ed editing capabilities are lost. The

user is instructed to press 'CONTROL-c* and a period (if

necessary) for editing. The editing capabilities for the

vi editor remain intact.

5. K5. MORE USEFUL?

SuperBIB is more useful compared with the bare ver­
sion of the Unix bibliographic system, Unix-bib.• SuperBIB

has been accepted by both naive and more sophisticated

users. Three users, one of them having no experience with

computers at all, were invited to make SuperBIB acceptance

tests. After fifteen minutes briefing, they were able to

use SuperBIB well, experiencing only minor confusions.
They all expressed interest in using SuperBIB to prepare

140

bibliographic information in the future.

The author has casually introduced SuperBIB to a

number of graduate students in the Computer Science
Department. Their reactions to SuperBIB are very posi­

tive.

SuperBIB is likely to become one of the user contri­

buted software tools in the '/usr/mnt/um/student/bin' area

on VAX-11/750 computer at the Computer Science Department

at the University of Montana.

5.2. VALUE OF SOFTWARE ENGINEERING METHODS

Based on the experience obtained from doing this pro­

ject, the author agrees that a quality software implemen­

tation depends on a good software design, and a good

design depends on an adequate analysis, although the con­

verse of these propositions may not be true. A good

analysis may not be transformed into a good design because
the designer may not follow the principles and methods of

good design. A good design may not be transformed into a

quality software product because the programmer (or coder)

may not follow the principles and methods of good software

implementation.

141

5.2.1. ANALYSIS

De Marco's Structured Analysis methods are good at

analyzing the functional aspects of a system, but fall

short at specifying precisely the human-engineering (or
user-interface) aspects of the system.

The Structured Analysis methods were used to analyze

SuperBIB functionally. The Structured Analysis methods

and supporting documents did help the author to understand
the problem at hand, and to identify what had to be done.

First, the Physical and Logical Data Flow Diagrams (DFDs)

of the current Unix bibliographic system, Unix-bib, were

developed to reflect the current operations in Unix-bib.

Then a set of Logical Data Flow Diagrams of the newly pro­

posed bibliographic system, SuperBIB, were derived to

identify functional requirements in SuperBIB.

De Marco suggests that, during a complete life-cycle
of the analysis stage, we analyze systems without over­
loading the analysts with the control information, such as

the executive components, decision-making and looping.

The author agrees that it is a good practice to bypass the

control information during the early analysis phase

because the amount of information the analyst has to deal

with is too great to grasp in the first attempt. The

142

analyst has to start from somewhere and make progress from

there. But bypassing control information during a com­

plete life-cycle of an analysis stage was proved to be

incompatible with a predominant user-interface software

project. In a predominant user-interface project, the

most important thing is to understand what the user wants
in the aspect of human-machine interaction, not the func­

tionality of the system. To analyze the human-machine
interaction, to harmonize the machine with the human being

who will use the machine, control information is a neces­

sity. Therefore, De Marco's Structured Analysis methods

are inadequate to analyze a predominant user-interface
software project.

A potential solution would be to develop a menu-tree,

a hierarchy of menus, and a draft of a user's guide.
Based on this thesis project, the author found that a menu

tree, and a rough draft of the user's guide were very

helpful in analyzing precisely the user's needs in the

area of human-machine interactions. The author believes
that the analyst should start with deriving a menu tree,

then proceed to develop a draft of the user's guide, and

verify (walk through) both documents with the users.

143

5.2.2. DESIGN

The author agrees that the Structured Design method

used in the SuperBIB project was adequate to design a sys­

tem architecturally, although the effect was not signifi­

cant in this project due to the small size of the project.

The author believes that the architectural design has to

be supplemented by developing pseudo-code in a presentable

form, and the documents should be "walked through" by

software developers, including the designer himself.

Developing a prototype is expensive, although it is

beneficial. The author feels that prototyping is a good

method to collect user feedback, and to validate the

design, etc. However prototyping should be used in a dis­

ciplined way, otherwise it may become a not-well-planned
coding session in the name of prototyping.

The author agrees that user-oriented design, a design

method that is based on the observation and analysis of

the user's reaction to a proposed software design, is the

best way to design an easy-to-use user interface for a

given functionality [Good,1984]. Iterating the design

based on the user's reaction to the initial design has

been proven to be a nice way to design a user interface.

144

5.2.3. IMPLEMENTATION

The top-down coding and testing proved to be well-

suited in software development. Based on this thesis pro­

ject, the author believes that the top-down approach is

better than the bottom-up in the aspect of collecting the

user feedback which leads to successful software develop­

ment. She also agrees that the Structured Programming

techniques are a necessity to produce reliable and main­

tainable software, and to control the life-cycle costs of
the software.

Due to the fact that the author had practiced the

top-down approach, she was able to demonstrate the skele­
ton versions of SuperBIB to the representatives of the

users at an early stage of development. With the help of
project director, Dr. A. Wright, and the fact that the

user feedback indicated room for improvement in the first

release of SuperBIB, the author realized that her work in

the analysis stage was not precise enough in the area of

human-machine interaction.

An analysis of the human-machine interaction area was

conducted, and verified by the representatives of the

potential users. A re-design of SuperBIB, mainly in the

areas of INQUIRY, PRINT, and SORT, was done. The

145

implementation of the re-design was completed in about ten

working days, due to the fact that the author had prac­

ticed structured programming techniques which make the

programs easy to understand, modify, and maintain. The

author estimated that over fourteen hundred out of twen-

tysix hundred lines of original source-code were either
added, deleted or modified during the modification [5-2].

In summary, if the author had not practiced the top-

down approach and collected the user feedback at an early

stage of development, she might not have realized that her

work in the analysis stage was not precise enough in the

area of human-machine interaction when there was still

time to fix the flaw. If the author had not practiced the

Structured Programming techniques, she might have had dif­

ficulty modifying a relatively large portion of source-

code quickly.

5.2- FUTURE WORK

[5-2] The second release of SuperBIB contains little
over 3,300 lines of source-code in the C language. These
figures include generous comment lines.

146

5.2*1. minor enhancements

Editing without using a text editor (editing by
answering questions) would be necessary to serve those

users who do not wish to learn any text editor. Entering

search words without naming a file, and searching for

reference entries that match a part of the search words is

desirable. Currently, SuperBIB is aimed at serving the

novice users. The development of a sophisticated mode of

operation for SuperBIB would be a plus to its overall per­
formance .

5.2*2. MAJOR ENHANCEMENTS

Preprocessors for Nroff and Bib, interfaces between

SuperBIB and other systems, such as BIBLIO, LIBHCOR, and

the Washington Library Network (WLN) would be major
enhancements to SuperBIB.

Nroff, a text processor, is a prerequisite to Bib, a
sophisticated bibliographic preprocessor for Nroff in the

Unix environment [5-3]* Therefore, an Nroff preprocessor

[5-3] To serve those users who do not wish to learn
the Nroff text processor, SuperBIB was built on simplified
bibliographic tools, such as Roffbib, Lookbib, Sortbib,
and Invert. SuperBIB has nothing to do with Bib, a so­
phisticated bibliographic preprocessor for Nroff.

147

would be a prerequisite to a sophisticated human-

engineered (user-friendly) bibliographic system in the

Unix environment. By using imprecise (incomplete) citation

strings in a text file, Bib can retrieve appropriate

entries from the reference file, to produce the stand­

alone bibliography, and to produce the precise (tradi­
tional) citation strings for the text file. Bib recognizes

some standard abbreviations, such as the months, certain
journal titles, conference names, and certain publishers.

For instance, the user may type 'WILEY* for 'John Wiley &
Sons', or 'CACM' for 'Communications of the ACM', or 'JAN'

for 'January', etc.

Once preprocessors for Nroff and Bib are available,
the user could:

(1) format the stand-alone bibliography in various
formats (to be explained),

(2) retrieve entries from the reference file by using
imprecise (incomplete) citation strings,

(3) abbreviate authors' (or editors') first names,

(4) reverse the first names and last names for all,
or a part, of authors' (or editors') names,

(5) footnote references,
(6) hyphenate adjacent references,

(7) sort by other elements beyond authors' last
names, and publication dates.

148

According to Budd, a summary of various formats of

the bibliography generated by using Bib and Nroff are
these:

(1) astrophysical journal style,

(2) footnoted citations,

(3) Hanson Normal Forms,

(4) listref default,

(5) open alphabetic,

(6) open numeric,

(7) SP and E Journal style,

(8) standard alphabetic,

(9) standard numeric,
(10) standard sorted numeric,

(11) superscripted numeric style.

5.3.3. INTERFACES WITH BIBLIO. LIBHCOR AND WLN

Interfaces between SuperBIB and BIBLIO, (or LIBHCOR),

would be beneficial to certain users who are currently

using these systems. Links between SuperBIB and the Wash­
ington Library Network (WLN) would be beneficial to

transfer information between a personal reference file in
Unix and a WNL database system through the IBM-PC.

149

SUPERBIB 150 APPENDIX A

J VOL
IN

J NUM
IN

J JOUR
IN

J PG IN
INilN

READ
VOLUME

READ
JOURNAL
NAME ,

READ
JOURNAL

V NUMBER y
'READ
AUTHOR
i TITLE
\ date

READ
PAGE

'READ
ABS COM
VKWD REF,

JOUR OUT VOL OUT (NUM OUT PG OUT

10
fORMAT
JOURNAL
NAME

FORMAT
VOLUME

FORMAT
JO URN,
NUMBEJ

FORMAT
PAGE

BIBLIO DATABASE
Figure 2-5B ADD JOURNAL ARTICLE (Diagram 1.2)

R REP
TNIN IN

READ
AUTHOR
TITLE
. DATE

('READ
REPORT
NAME

f READ '
PUBLISH El
, CITY

READ
ABS COM
KWD REF

I REP OUT

FORMAT
REPORT
V NAME

BIBLIO DATABASE
Figure 2-5C ADD TECHNICAL REPORT (Diagram 1.3)

APPENDIX A-l

(READ
AUTHOR
i TITLE
Ydate

READ \
'UBLISHER
CITY

BIBLIP DATABASE
Figure 2-5D ADD BOOK (Diagram 1.1.1)

A_T_D IN JOUR IN PG IN
IN

READ
PAGE .READ

AUTHOR
TITLE
V DATE.

READ
JOURNAL
NAME

/ READ
ABS COM
\KWD REF

PG OUTJOUR OUT

FORMAT
JOURNAL
NAME

FORMAT
PAGE

BIBLIO DATABASE
Figure 2-5E ADD CONFERENCE PROCEEDINGS (Diagram 1.1.2)

APPENDIX A-2

BIBLIO DATABASE
Figure 2-5F ADD ARTICLE IN BOOK (Diagram 1.1.3)

APPENDIX A-3

S VOL INS IN

READ
SERIES

VOL OUTS OUT

FORMAT
SERIES

FORMAT
VOLUME

BIBLIO DATABASE
Figure 2-5G ADD MULTI-VOLUME SERIES (Diagram 1.1.4)

E DATE INE PC INE TIT INE ED IN K R IN

READ
EDITOR

READ
TITLE

READ 1
PUBLISH El
Cl XI)

READ
DATE

TIT OUTED OUT DATE OUT

FORMAT
EDITOR FORMAT

TITLE FORMATDATE

/READ absV
- com kwd)
I ref 1

BIBLIO DATABASE
Figure 2-5H ADD EDITED BOOK (Diagram 1.1.5)

APPENDIX A-4

I

AUT IN iTIT IN

READ
AUTHOR

READ
TITLE

READ
DATE

IT OUT DATE OUT

FORMAT
AUTHOR

FORMAT
TITLE FORMATE

DATE i

>ATE IN

BIBLIO DATABASE
Figure 2-51 READ AUTHOR TITLE DATE (Diagram 1.1.1.1)

PUB IN Cl IN

READ
CITY

READ
publish:

I OUT'UB OUT

FORMAT
CITY

FORMAT
publish:

BIBLIO DATABASE
Figure 2-5J READ PUBLISHER CITY (Diagram 1.1.1.2)

APPENDIX A-5

REF OUT

ABS IN KWD INCOM IN EF IN

COMMENT KEYWOR

ABS OUT COM OUT KWD OUT

.5
FORMAT
ABSTRACT

.6
FORMAT
COMMENT

.7
FORMAT
KEYWORD

FORMAT
2ND
REF

BIBLIO DATABASE

Figure 2-5K READ ABS COM KWD REF (DIAGRAM 1.1.1.3)

APPENDIX. A-6

THE USER'S GUIDE
FOR

SUPERBIB -
SUPER BIBLIOGRAPHIC SYSTEM

by
A.Y. (Michelle) Liao

University of Montana
Missoula, Montana

SUPERBIB 152 APPENDIX B

TABLE OF CONTENTS

INTRODUCTION........ 153
BACKGROUND INFORMATION 155

FEATURES AND LIMITATIONS 158

AN OVERVIEW OF OPERATIONS................... 161

ADD REFERENCE ENTRIES 168

INQUIRE REFERENCE FILE 175

PRINT BIBLIOGRAPHIES 180
MODIFY REFERENCE ENTRIES 184

SORT REFERENCE ENTRIES 187

1. INTRODUCTION

Superbib, is a set of superior programs (preproces­
sor, user interface) for the Unix Bibliographic System,

Unix-bib. SuperBIB, was developed to enable researchers,
educators, writers, and members of the general public to
easily prepare bibliographies.

The preparation of a bibliography is a perfect appli­
cation for the computer, since the computer is good at

recording, searching and sorting information. An automated

bibliographic system can accept, search, print, or sort

bibliographic information with a minimum of effort. The

bibliographic information stored in the computer may be

easily modified and camera-ready bibliographies may be

generated at a touch of the finger.

Superbib is easy to use, due to the fact that it is
menu-driven, screen-oriented and employs windows. Super-

?

BIB provides a vivid dialogue between the user and itself.

SuperBIB provides adequate on-line help and the user nei­

ther memorizes the command names, nor refers to this

User's Guide constantly.

USER’S GUIDE 153 INTRODUCTION

USER'S GUIDE 154 . INTRODUCTION

SuperBIB displays option menus on the user's termi­

nal. To select a command, position the cursor next to the

option desired using the space bar, then press the RETURN

key.

Superbib subdivides a terminal screen into four win­

dows. The first window displays greetings. The second win­

dow displays menus and allows the user to select commands.

The third window prompts the user for information inputs,

and accepts the inputs. The last window reports the status

of SuperBIB. For example, a highlighted ADD indicates

that Superbib is in the process of adding reference

entries into a reference file.

2. BACKGROUND INFORMATION

2.1. DEFINITIONS

The reference file, and its components are defined

below:

(1) An entry element may be a citation (an author's name,
a title, or a publication date, etc.), or an annota­

tion (an abstract or comments).

(2) A collection of all entry elements for a particular

publication is called a reference entry.

(3) A collection of reference entries is called a refer­

ence file.

2.2. A SAMPLE REFERENCE FILE

A sample reference file, and its components is illus­

trated in Table 2-1.

USER'S GUIDE 155 BACKGROUND INFORMATION

USER’S GUIDE 156 BACKGROUND INFORMATION

TABLE 2-1 A Sample Reference File and
its Components.

COMMENTS FILE AS SEEN ON SCREEN

ref.
file

M. Bishop
I %k L. Snyder

ref. < %T The Transfer of Information
entry < Proceedings of the 7th SOSP

I %P 45-54
— ?D 1979

%E R.A. DeMillo
reference ->5&E D.P. Dobkin
element %E A.K. Jones

%E R.J. Lipton
%T Foundations of Secure Computation
%I ACPRESS
%D 1978
/s

I
key-letter —

Note that a blank line separates each reference entry.

USER'S GUIDE 157 BACKGROUND INFORMATION

■ 2-2. KEY-LETTERS

Currently Superblb recognizes the key-letters listed

in Table 2-2.

TABLE 2-2 Key-letters Recognized by SuperBIB

Key-letter Description
A Author's name
B Title of book containing article
C City of publication
D Publication date
E Editor(s) name
I Issuer (publisher)
J Journal name
K Search words (Key-words)
N Issue number

' 0 Other information
P Pages of article
R Technical report name
S Series title
T Title
V Volume number
X Annotation

2- FEATURES AND LIMITATIONS

2-1- features

SuperBIB accepts, inquires, prints, alters, and sorts

the bibliographic information. The SuperBIB features are
discussed below.

(1) Superbib accepts reference entry elements, such
as citations (authors' names, titles, publication
dates, etc.), annotations (abstracts and com­
ments) in a friendly fashion. It stores this in­
formation in a file of the user's choice. Up to
3,500 characters of information may be accepted
for an annotation (abstracts or comments). Up to
64 characters of the information may be accepted
for other reference entry elements.

(2) SuperBIB may search for and select reference en­
tries which match all search words, i.e., au­
thors' (or editors') last names, words from ti­
tles, publication dates, other search words
(key-words), or a combination of these. All
reference entries meeting all the search criteria
will be selected.

(3) SuperBIB may print regular and annotated bi­
bliographies, either numbered or un-numbered, and
either single- or double-spaced. In addition, a
doubled-spaced citation may be printed along with
a single-spaced annotation. SuperBIB may display
a bibliography on the terminal screen, print it
on a printer, or store it in a file of the user's
choice.

(4) SuperBIB may invoke vi, (or ed) text editor of
the Unix environment to alter the reference file.

USER'S GUIDE 158 FEATURES & LIMITATIONS

USER'S GUIDE 159 FEATURES & LIMITATIONS

(5) SuperBIB sorts bibliographic information by the
senior authors' last names, and publication
dates.

(6) SuperBIB provides adequate on-line help. The
current status of the Superbib execution is in­
tact while the help message is displayed. A sam­
ple on-line help is illustrated in Table 3-1:

TABLE 3-1 A Sample SuperBIB On-line Help
Message.

Reference File : ____
Search-word File : ____
Inquiry-result File : ____
Bibliography File : ____
Sorted reference File : ____

To delete character, press DELETE.
To delete a line, press CTRL-u.
To advance the cursor, press SPACE BAR.
To select a command, press the RETURN key.
To escape to parent menus, press ESC keys.

Note that Search-word File is a file holding
search words. Inquiry-result File is a file
holding the entries that match the search
words. Bibliography File is a file holding
the formatted bibliography.

USER'S GUIDE 160 FEATURES & LIMITATIONS

2.2. LIMITATIONS

The limitations of SuperBIB are listed below:

(1) Only one paragraph of annotations (abstracts, or
comments) may be entered although up to 3500
characters may be accepted. (The documents of
the Unix bibliographic system say that more than
one paragraph of the annotations may be entered,
but this claim is questionable.) SuperBIB
displays a prompt, 'ANNOTATION', for both
abstract and comment inputs. Abstracts and com­
ments do not have separate prompts. Extracting
and inserting the annotation (abstracts and com­
ments) into a text file is not accommodated.

(2) Reference entries may be selected, if these en­
tries match all of the search words, i.e. the
authors' (or editors') last names, words from ti­
tles, publication dates, other search words
(key-words) and a combination of these. Entries
matching a part of the search words cannot be
selected in the current installation of SuperBIB.
Wildcard searching is not accommodated.

(3) Limited bibliographic styles may be printed.
Printing a bibliography in other styles is not
accommodated [1].

(4) Altering bibliographic information without invok­
ing a text editor is not accommodated.

(5) Sorting bibliographic information by criteria
other than the senior authors' last names and
publication dates is not accommodated.

[1] Working knowledge of 'Nroff' and 'Bib' are re­
quired to acquire full service from the Unix bibliographic
system.

4. AN OVERVIEW

The SuperBIB terminal screen of is subdivided into

four windows. The first window, one-line in size, displays

greetings. The second window, 11-lines in size, displays

menus and accepts the user's selections. The third window,
11-lines in size, prompts the user for information,

accepts input, and displays help messages (if applicable).

The last window, 1-line in size, reports the status of

Superbib. For example, a highlighted ADD indicates the

user is adding a reference entry into the reference file.

Superbib displays menus on the terminal. To select a

command, position the cursor next to the command desired

by pressing the space bar, then press the RETURN key.

4.1. HOW TO INVOKE SUPERBIB

First log into a VAX computer on which SuperBIB is

installed, then type 'sb' in lower case. If the user

invokes SuperBIB successfully, a NAME A REFERENCE FILE

menu will be displayed on the terminal screen (Table 4-1).

USER'S GUIDE 161 AN OVERVIEW

USER'S GUIDE 162 AN OVERVIEW

TABLE 4-1 The NAME A REFERENCE FILE Menu

* SuperBIB - SUPER Bibliographic System *
* *
* «< NAME A REFERENCE FILE. >» *
* *
* To terminate input, press RETURN. <
* To edit, press DELETE or CTRL-u. *
* *
* *
• REF. FILE: [] *
* *

Note that the symbol, [], indicates the cursor
position when the menu first appears.

4.2. TOW TO EXIT SUPERBIB

To exit SuperBIB gracefully, select.the EXIT option

from the SELECT A COMMAND menu (to be explained in Section

4.4). If the user is not currently at this menu, he may

press the ESC (escape) key repeatedly (if necessary) to

reach this menu,.then select the EXIT option.

12 recover from mistakes
Before the user presses the RETURN key to terminate

his input, he may press the DELETE key to delete one char­

acter at a time; or he may type CONTROL-u to delete a

line. After he has pressed the RETURN key, the EDIT

USER’S GUIDE 163 AN OVERVIEW

option from the SELECT A COMMAND menu may be used to

correct the information in the reference file.

The user may press the ESC key to exit menus which he

wishes to abort. He may press the ESC key repeatedly to

go back to the SELECT A COMMAND menu. If the user presses

the ESC key when adding an entry element, SuperBIB escapes

to its parent level menu. Invoke an editor to delete this

information", if desired. However, reference entry element
information entered prior to ESC termination will be

entered into the reference file.

USER'S GUIDE 164 AN OVERVIEW

4.4. SELECT A COMMAND MENU

The menu of SELECT A COMMAND is illustrated in Table

4-2.

TABLE 4-2 The SELECT A COMMAND Menu

* SuperBIB - Super Bibliographic System *
» *
* «< SELECT A COMMAND. »> #
* #
* [] ADD ? *
* INQUIRE ? #
PRINT ? *
* EDIT ? *
* SORT ? *
* INVOKE NEW REFERENCE FILE? #
* HELP ? *
* EXIT ? *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* #

Note that the last line on the menu shows
the contents of a status report.

The SELECT A COMMAND MENU is discussed below.

(1) ADD, adds reference entries to a reference file
of the user's choice,

(2) INQUIRE, selects the reference entries matching
all search words, i.e. names, words from titles,
publication dates, key-words, or a combination of
these,

USER’S GUIDE 165 AN OVERVIEW

(3) PRINT, prints the different styles of regular and
annotated bibliographies on the printer, displays
it on the terminal, or stores it in a file of the
user's choice.

(4) EDIT, modifies a reference file.

(5) SORT, sorts the bibliography according to the
senior author's last name and publication dates.

(6) INVOKE NEW REFERENCE FILE, invokes a reference
filename for adding, searching, printing, etc.

(7) HELP, provides on-line help messages.

(8) EXIT, exit SuperBIB gracefully.

4.5. HOW TO EXIT SUPERBIB TEMPORARILY

The user may type CONTROL-z to return to the Unix

Shell level whenever he desires. He may do anything which

is acceptable at the Shell level. Then he may type 'fg'

to return to SuperBIB.

Some of the Unix commands the user may need are dis­

cussed below.

4.6. HOW TO GET A LISTING OF FILES

To get a listing of files (or directories) type 'Is'

at the Shell level. Naming your reference files with a

standard extension (e.g., 'ref') is highly recommended.

For example, the author names her reference file for this

USER'S GUIDE 166 AN OVERVIEW

thesis project 'thesis.ref'. In this case the user may

type 'Is *.ref' to obtain a listing of all reference
files.

4.7. HOW TO COPY FILES

To obtain a duplicate copy of your file, type 'cp

your_file_name a_different_file_name' at the Shell
level. It is recommended that you obtain a duplicate copy

of important files, i.e. the reference files.

4.8. HOW TO REMOVE FILES

The user may name his files with standard names and

these files will be removed (deleted) automatically when

exiting SuperBIB. A listing of recommended (standard)

file names is in Table 4-3.

TABLE 4-3 Recommended File Names

File Type Recommended File Name

Search words temp.kwd*
Inquiry results temp.inq*
Bibliography temp.bib*
Sorted references temp.sorted*

Note that the '*' indicates any letters,
numbers, or others.

USER'S GUIDE 167 AN OVERVIEW

4.9. HOW TO DISPLAY FILES

At the Shell level, type 'more your_file_name' to

display the first page of your file. Once you are in the

MORE program, press the space bar, or the RETURN key to

see more of the display; type 'q' to quit prematurely.

4.10. HOW TO PRINT FILES

To obtain a hard-copy of a file, type 'lpr
your_file_name' at the Shell level.

4.1_[. HOW TO GET A PRINTER-QUEUE STATUS REPORT

To learn the status of your print jobs, type 'lpq' or

'lpq +2' at the Shell level. The 'lpq +2' will display

the printer-queue status every two seconds.

4.12. HOW TO LEARN MORE ABOUT UNIX

The user may type 'learn' at the Shell level to learn

'files', 'morefiles', 'macros (text processing)', 'eqn'

editor, vi, or the C language. Note that this feature is

not available in 'csvax', VAX-11/750 in the Computer Sci­

ence Department.

5. ADD REFERENCE ENTRIES

5.1. SELECT A PUBLICATION TYPE

The menus of SELECT A PUBLICATION TYPE are illus­

trated in Table 5-1:

TABLE 5-1 The SELECT A PUBLICATION Menu
**

* SuperBIB - Super Bibliographic System *
* *
* « < SELECT A PUBLICATION TYPE. » > *
* *
* [] BOOK ? *
* ARTICLE FROM JOURNAL ? *
* ARTICLE FROM BOOK ? *
* TECHNICAL REPORT ? *
* CONFERENCE PROCEEDINGS ? *
* COMPILED BOOK ? *
* MULTI-VOLUME SERIES ? *
* OTHERS ? *» *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP * * *
a*##*##*####*#*#*#**#*##***#*##*###***#####*

Note that ADD of the status report is high­
lighted to indicate that the user is in the
process of adding an entry to the reference
file.

When adding a reference entry, the user needs to

specify the type of publication which is to be added. For

USER'S GUIDE 168 ADD REFERENCE ENTRIES

USER'S GUIDE 169 ADD REFERENCE ENTRIES

the purpose of Illustrating more ADD menus, the author

assumes that the user wants to add a book entry to the

reference file. The operations of adding the author's

name of the book entry are described below. The operations

for adding other entry elements is similar to those of

adding authors' names, and therefore are omitted.

5.2. ENTER AN AUTHOR'S NAME

Snap-shots of menus for ENTER AN AUTHOR'S NAME are
illustrated in Tables 5-2A to 5-2E:

TABLE 5-2A The ENTER AN AUTHOR'S NAME Menu
When it First Appeared

##****#*#***#***********##***#*********#
* SuperBIB - Super Bibliographic System *
* *
* « < ENTER AN AUTHOR'S NAME » > *
*
* Enter given names first. *
* To bypass, press RETURN. *
* *
* *
« AUTHOR [] *
* ' *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP * * #
ft***

USER'S GUIDE 170 ADD REFERENCE ENTRIES

TABLE 5-2B The User Entered an Author's
Name.

**
* SuperBIB - Super Bibliographic System *
* *
* « < ENTER AN AUTHOR'S NAME » > *
*
* Enter given names first. *
* To bypass, press RETURN. *
* #
* AUTHOR John Smith *
* : *
#
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
 * *
ft***

Note that 'John Smith' is an assumed name
of an author.

TABLE 5-2C SuperBIB Asks for the Possibility
of Having Multiple Authors

ft***
* SuperBIB - Super Bibliographic System *« *
* « < MORE AUTHORS' NAMES ? > » *
* *
* [] No ? *
* Yes ? *« *
* AUTHOR John Smith ** #
* *
• ADD INQUIRE PRINT EDIT SORT EXIT HELP *
 # *
a####**#***####*##**********#*##*#********#*

USER'S GUIDE 171 ADD REFERENCE ENTRIES

TABLE 5-2D The User Indicated That He Has
Multiple Author Names

ft***
* SuperBIB - Super Bibliographic System ** *
* «< MORE AUTHORS' NAMES ? »> *
* #
* No ? *
* [*] Yes ? *
* *
* AUTHOR John Smith ** *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP * * #
**

Note that the symbol, [#], indicates the user
has selected this option.

TABLE 5-2E SuperBIB Prompts the User For
Author Name.

a*#***##********##*********#*******##*#*****
* SuperBIB - Super Bibliographic System #
* *
* « < MORE AUTHORS' NAMES ? » > *
* *
* No ? *
* [*] Yes ? *
* *
* AUTHOR John Smith *
* *
* AUTHOR [] ** *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
 * *
**

USER'S GUIDE 172 ADD REFERENCE ENTRIES

When entering names to the reference file:

(1) Multiple authors' (or editors') names are accom­
modated.

(2) Type the author's first name first, then the last
name.

(3) SuperBIB treats the last word in a name entry as
the last name, therefore special care has to be
taken for some last names. If the last name is
composed of two words, type a back slash between
the two words. For example, the user has to type
'De [back slash] Marco' for the name 'De Marco’.
If the author's name contains 'Jr.', type a comma
before 'Jr.'.

5.3. TEMPLATES

Each type of publication has its own template

(prompts for inputs). Prompts and dashed lines will be

displayed on the user's terminal. The user is to type the

input at the beginning of the dashed line. Leading white

space is ignored.

5.3.1. TEMPLATE OF A BOOK ENTRY

Author
Title
Date
Publisher
City
Search word(s)
Annotation

USER'S GUIDE 173 ADD REFERENCE ENTRIES

5.3.2. TEMPLATE OF AN ARTICLE FROM A JOURNAL

Journal Title
Volume #
Number
Date
Page #
Author
Book Title
Search Key(s)
Annotation

5.3.3. TEMPLATE OF AN ARTICLE FROM A BOOK

Article Title
Date
Publisher
City
Page #
Author
Book Title
Search Key(s)
Annotation

5.3.4. TEMPLATE OF A TECHNICAL REPORT ENTRY

Report Title
Date
Publisher
City
Author
Article Title
Search Key(s)
Annotation

USER'S GUIDE 174 ADD REFERENCE ENTRIES

5.3.5. TEMPLATE OF CONFERENCE PROCEEDINGS

Journal title
Date
Page #
Author
Book Title
Search words(s)

5.3.6. TEMPLATE OF A COMPILED BOOK ENTRY

Editor
Book title
Publisher
Date

5.3.7. TEMPLATE OF A MULTI-VOLUME SERIES

Editor
Article Title
Series Title
Volume #
Page #
Publisher
Date
City
Author
Book Title

6. INQUIRE REFERENCE FILE

The user may search for reference entries matching

certain search words, i.e. authors' (or editors') names,

words from titles, publication dates, other search words

(key-words) and a combination of these. Only the first

six characters of the search words are significant. The

user may choose to type the first six characters only, if

applicable [2]. Search words shorter than three charac­

ters are ignored [3]. For example, if the user wants to

search for entries that have something to do with the C

language, the search word he provides cannot be 'c', due

to the fact that any words less than three characters long

are ignored. Enter an entry (e.g. 'c-language') as a

key-word element, then search for 'c-language' instead.

6.JL SELECT A DESTINATION OF THE INQUIRY

The user may select a destination for the output of

the inquiry results. The SELECT A DESTINATION menu is

illustrated in Table 6-1.

[2] & [3] These are system defaults and may be
changed.

USER'S GUIDE 175 INQUIRE REFERENCE FILE

USER'S GUIDE 176 INQUIRE REFERENCE FILE

TABLE 6-1 The SELECT A DESTINATION Menu
For Routing Inquiry Results.

ft**
* SuperBIB - Super Bibliographic System #
* #
* < « SELECT A DESTINATION. » > *
#
* [] Terminal ? *
* Printer ? *
* File ? *
« HELP ? *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *
«*##******##****#***#*********#***#**

6.2. NAME A SEARCH-WORD FILE

6.2.1. NAME A FILE TO STORE SEARCH WORDS

The user may name a file to store his, search words.

A filename of 'temp.kwd*', where could be any letter,
number, or others, will be deleted automatically when

exiting SuperBIB. The NAME A FILE TO STORE SEARCH WORDS

menu is illustrated in Table 6-2.

USER'S GUIDE 177 INQUIRE REFERENCE FILE

TABLE 6-2 The NAME A FILE TO STORE SEARCH
WORDS Menu

* SuperBIB - Super Bibliographic System *
* *
* < NAME A FILE TO STORE SEARCH WORDS. > *
* *
* *
* SEARCH-WORD FILE : [] *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
: *

Note that a filename of 'temp.kwd*' is-
recommended if the user wants to delete
this file when exiting SuperBIB.

6,2.2. SEARCH-WORD FILE AVAILABLE ?

SuperBIB assumes that the user may have a search-word
file available, if he has invoked the INQUIRE command more

than once. In this case, the menu of SEARCH-WORD FILE

AVAILABLE will be displayed (Table 6-3).

USER'S GUIDE 178 INQUIRE REFERENCE FILE

TABLE 6-3 The SEARCH-WORD FILE AVAILABLE
Menu

* SuperBIB - Super Bibliographic System *
« *
* «< SEARCH-WORD FILE AVAILABLE ? »> *
* *
* [] No ? *
* Yes ? *
* HELP ? *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *# #

Note that this menu appears only if the user
has successfully created a search-word file.

6.2.3. NAME THE READY-MADE SEARCH-WORD FILE

TABLE 6-4 The NAME YOUR SEARCH-WORD FILE
Menu

* SuperBIB - Super Bibliographic System *
* *
* «< NAME YOUR SEARCH-WORD FILE. »> *
* *
* *
• SEARCH-WORD FILE : [] *
*
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *
♦a##**##*##*#**#*******#**#**#**#**#******#

Note that this menu appears only if the user
has successfully created a search-word file
and wishes to use the same search-word file.

USER'S GUIDE 179 INQUIRE REFERENCE FILE

TABLE 6-5 NAME A FILE TO STORE INQUIRY
RESULTS IF DESTINATION IS FILE.

ft**
* SuperBIB - Super Bibliographic System *
* *
* < NAME A FILE TO STORE INQUIRY RESULTS >** *
* INQUIRY FILE: []____________________ *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
*

Note that a filename of 'temp.inq*' is
recommended if the user wants this file
deleted when exiting SuperBIB.

7. PRINT BIBLIOGRAPHIES

7.1,. SELECT A DESTINATION FOR THE BIBLIOGRAPHY

A bibliography may be printed on the user's terminal

screen, or on a printer. The user may store the bibliogra­

phy in a file of his choice. The SELECT A DESTINATION menu

is illustrated in Table 7-1.

TABLE 7-1 The SELECT A DESTINATION Menu
For Printing a.Bibliography

* SUPERBIB-Super Bibliographic System *» *
* « < SELECT A DESTINATION. » > *
* *
* [] Terminal ? *
* Printer ? #
* File ? *
» HELP ? *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
*

USER'S GUIDE 180 PRINT BIBLIOGRAPHIES

USER'S GUIDE 181 PRINT BIBLIOGRAPHIES

7.2. SELECT BIBLIOGRAPHY STYLES

7\2.K REGULAR OR ANNOTATED

TABLE 7-2 SELECT A BIBLIOGRAPHY TYPE Menu

* SUPERBIB-Super Bibliographic System *
* *
* «< SELECT A BIBLIOGRAPHY TYPE. »> *
* *

» ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *

7.2.2. NUMBER YOUR BIBLIOGRAPHY MENU

TABLE 7-3 The NUMBER YOUR BIBLIOGRAPHY
Menu

* SUPERBIB-Super Bibliographic System *
* *
* « < NUMBER YOUR BIBLIOGRAPHY ? » > *
* *
* [] No ? *
* Yes ? *
* HELP ? *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *

»
*
*
*

[] Regular Bibliography ? *
Annotated Bibliography ? *.
HELP ? *

*

USER'S GUIDE 182 PRINT BIBLIOGRAPHIES

I-2.2. SINGLE OR DOUBLE SPACED

TABLE 7-4 The SELECT A SPACING STYLE Menu
For a Regular Bibliography

* SUPERBIB-Super Bibliographic System *
* *
* < « SELECT A SPACING STYLE ? » > *
* *
* [] Single Spaced ? *
* Double Spaced ? *
* HELP ? *
* *
» ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *

Note that this menu appears for the regular
bibliography only. The user may single or
double space the citations.

TABLE 7-5 The SELECT A SPACING STYLE Menu
For an Annotated Bibliography

* SUPERBIB-Super Bibliographic System *
* *
* «< SELECT A SPACING STYLE ? »> *
* *
* [] Single Spaced ? *
* Double Spaced ? *
* Double & Single Spaced ? *
* HELP ? *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *

Note that this menu appears for the annotated
bibliography only. The user may single or
double space the citations, or single space
citations and double space annotations.

USER’S GUIDE 183 PRINT BIBLIOGRAPHIES

7.3. NAME A FILE TO STORE THE BIBLIOGRAPHY

The NAME A FILE TO STORE THE BIBLIOGRAPHY menu is

illustrated in Table 7-6.

TABLE 7-6 NAME A FILE TO STORE THE
BIBLIOGRAPHY Menu

**
* SUPERBIB-Super Bibliographic System *
* *
* « < NAME A FILE TO STORE BIB. » > *
* »
* [] ** *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *
**

Note that a filename of 'temp.bib*’ is
recommended if the user wants to delete this
file automatically when exiting SuperBIB.

8. MODIFY REFERENCE ENTRIES

8.K SELECT A MODIFYING METHOD

The user may select a method to modify the reference

file. Currently, the user may use a text editor (*vi’ or

'ed') to modify the reference file. Modifying without

invoking an editor is not implemented. The SELECT A MODI­

FYING METHOD menu is illustrated in Table 8-1.

TABLE 8-1 SELECT A MODIFYING METHOD Menu
**
* SuperBIB - Super Bibliographic System *
* ' *
* «< SELECT A MODIFYING METHOD. »> *
* *
* [] Text editor ? *
* Questions & answers ? *
* HELP ? *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
* *
**

8.2. SELECT AN EDITOR

The user may select his favorite editor to modify a

reference file. Currently, the user may invoke the vi, or

USER’S GUIDE 184 MODIFY REFERENCE ENTRIES

USER’S GUIDE 185 MODIFY REFERENCE ENTRIES

ed editor. The author suspects that when invoked from

SuperBIB, the ed editor may not have its full editting

power, due to the fact that SuperBIB is screen-oriented

and the ed editor is a line-oriented editor. The SELECT

AN EDITOR menu is illustrated in Table 8-2.

TABLE 8-2 The SELECT AN EDITOR Menu
ft***
* SuperBIB - Super Bibliographic System *
* #
* «< SELECT AN EDITOR. »> *
#
* [] vi ? *
* ed ? *
* HELP ? »•
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
*
**

8.3. A VI EDITOR REFERENCE GUIDE

The quick reference guide for using the vi editor is

presented below.

USER'S GUIDE 186 MODIFY REFERENCE ENTRIES

You may type:

(1) a 1G* to move cursor to the end of the file; a
'#G' to move cursor to the #th line of the file.
For example, '10G' moves the cursor to the 10th
line from the current line.

(2) an 'h' to move cursor to your left,

(3) a 1J•, or '+', to move cursor down the screen,
(4) a *k*, or to move cursor up the screen,

(5) a '1' to move cursor to your right,
(6) an 'x' to delete a character. For example, '5x'

deletes five characters from the current charac­
ter.

(7) a 'dd' to delete a line. For example, '5dd'
deletes five lines from the current line.

(8) an *i* to enter insert mode; Press ESC to exit
insert mode,

(9) a 'o' to insert line(s) below the current line,
Press ESC to exit insert mode,

(10) a 'O' to insert line(s) above the current line,
Press ESC to exit insert mode,

(11) a 'CTRL-g' to learn what current line number is,

(12) a 'ZZ' to exit the vi editor.

9. SORT REFERENCE ENTRIES

The user may sort the reference entries according to

the last names of the senior authors, and publication
dates.

9«1. SELECT A DESTINATION FOR SORTING

The possible destinations for sorted reference

entries are the terminal screen, printer queue, or a file

of the user's choice. Route the sorted entries to a file,

if the user wants to have the bibliography (or reference

file) sorted. The current reference filename will be

changed to this sorted reference filename if a sorted

reference file is created successfully.

USER'S GUIDE 187 SORT REFERENCE ENTRIES

USER'S GUIDE 188 SORT REFERENCE ENTRIES

TABLE 9-1 The SELECT A DESTINATION Menu
FOR SORTED REFERENCE ENTRIES.

* SUPERBIB-Super Bibliographic System *
* *
* «< SELECT A DESTINATION. »> *
*
* [] Terminal ? *
* Printer ? *
* File ? *
* HELP ? *
« *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
» . *

Note: Select FILE when sorted bibliography
or reference’ entries are desired later.

9.1.1. NAME A FILE TO STORE SORTED ENTRIES

TABLE 9-2 The NAME A FILE TO STORE SORTED
REFERENCE ENTRIES Menu

**
* SUPERBIB-Super Bibliographic System *
* *
* « < NAME A FILE TO STORE SORTED REF.»> *
* #
* SORTED FILE [] *
* *
* *
* ADD INQUIRE PRINT EDIT SORT EXIT HELP *
*
ft***

Note that a filename of 'temp.sorted*' is
recommened if the user wants to delete this
file automatically when exiting SuperBIB.

BIBLIOGRAPHY

1. User *s Guide to BIBLIO, a Computerized Bibliographic System,
University of Chicago, Chicago, 111, 19S 1.

2. Using SSH Version SEM 1.3 under IBM VM/CMS, University of
Michigani Ann Arbor, July 1952.

3. UNIX Programmer's Manual, UNIX TIME-SHARING SYSTEM , 2, Bell
Labs, ""19$ 3*

4. Allman, E.P., -ME Reference Manual, University of Califor­
nia.

5. Allman, E.P., Writing Papers with NROFF Using -ME, Universi­
ty of California, 1979.

6. Arnold, Kenneth C.R.C., Screen Updating and Cursor Movement
Optimisation: A Library Package, University of California,
Berkeley.

7. Bergland, G.D. and R.D. Gordon, Tutorial: Software Design
Strategies, IEEE.

8. Boehm, B.W., Software Engineering Economics, Prentice-Hall,
1981.

S. Budd, Timothy A. and Gary M. Levin, "A UNIX Bibliographic
Database Facility," TR 82-1, University of Arizona, Tucson,
Arizona, 1982.

10. Burger, Maria and E. Bujdoso, Computerized Bibliography on
Homogeneous Chemical Oscillating Reactions (LIBHCOR)•Search
Manual, University of Montana, Missoula, Montana, 1983.

11. DeMarco, Tom, Structured Analysis and System Specification,
Yourdon Inc., New York, New York, March 1975.

12. Good, M.D., J.A. Whiteside, D.R.- Wixon, and S.J. Jones,
"Building a User-Derived Interface," Communications of the
ACM, vol. 27, no. 10, pp. 1032-1043, 1984.

13. Hancock, L. and M. Krieger, The C Primer, McGraw-Hill, 1982.

14. Jones, J.C., "Design Methods," in Tutorial on Software Des­
ing Techniques, ed. A.I. Wasserman, IEEE Computer Society.

15. Kernighan, Brian W. and Dennis M. Ritchie, The C Programming
Language, Prentice-hall, Englewood Cliffs, New Jersey, 1978.

189

16. Kernighan, Brian W. and Rob Pike, The UNIX Programming En­
vironment, Prentice-hall, Englewood Cliffs, New Jersey,
1984.

1?. Nicklin, P. J., The SPMS Software Project Management System,
University of California, Berkeley, Ts53-

18. Page-Jones, Meilir, "Transform Analysis,” in Tutorial:
Software Design Strategies, IEEE Computer Society.

19. Page-Jones, Meilir, "Transaction Analysis,” in Tutorial:
Software Design Strategies, IEEE Computer Society,

20. Parnas, D. L., "Designing Software for Ease of Extension and
Contraction," in Tutorial: Software Design Strategies, pp.
109-119, IEEE, 19S1-

-21. Stevens, W.P., G.J. Myers, and L.L. Constantine, "Structured
Design,” in Tutorial: Software Design Strategies, IEEE Com­
puter Society.

22. Waite, M., UNIX Primer Plus, Howard W. Sams Co..

23. Yourdon, E., "Top-Down Design and Testing," in. Tutorial:
Software Design Strategies, pp. 57-78, IEEE.

24. Yourdon, Edward and Larry L. Constantine, Structured Design,
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

190

	SuperBIB: A set of superior programs for the Unix bibliographic system
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

