14,881 research outputs found

    A systematic review comparing the functional changes and complications of DIEP and TRAM flaps in patients receiving breast reconstruction

    Get PDF
    Aim: Treatment for breast cancer may involve unilateral or bilateral mastectomy, with subsequent breast reconstruction surgery. Using autologous tissue flaps during reconstructive surgery is increasingly popular. The aim of this systematic review was to determine if the DIEP flap is more effective than the TRAM flap for breast reconstruction in females after a mastectomy in terms of donor site morbidity, recipient site morbidity, and functional outcome. Methods: Studies were identified using the databases Medline and Embase and applying predefined search criteria. The limits applied were; peer-reviewed, published between January 1980 to May 2013, human trials, English language. Study inclusion followed a review of the title, abstract, and full text by two independent researchers. Results: Two trends were identified. 1) DIEP flap surgery reduces the risk of abdominal weakness without increasing the risk of flap complications if performed by a surgeon well trained in microsurgery; 2) TRAM flap surgery remains a good alternative due to its evolution towards muscle-sparing techniques. Conclusion: This appears to be the first systematic review in this area of research. The evidence demonstrates that DIEP flap reduces postoperative abdominal morbidity, with no increased flap complication compared to the TRAM flap if performed by a surgeon well trained in microsurgery

    Electronic structures of [111]-oriented free-standing InAs and InP nanowires

    Full text link
    We report on a theoretical study of the electronic structures of the [111]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic sp3ssp^{3}s^{*} , spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C3vC_{3v} double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ\Gamma-point and some of these bands will split into non-degenerate bands when the wave vector kk moves away from the Γ\Gamma-point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π/32\pi/3-rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [111]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement.Comment: 9 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1502.0756

    Hole burning in a nanomechanical resonator coupled to a Cooper pair box

    Full text link
    We propose a scheme to create holes in the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success probability and the fidelity are calculated and compared with those obtained in the atom-field system via distinct schemes. As an application we show how to use the hole-burning scheme to prepare (low excited) Fock states.Comment: 7 pages, 10 figure

    Increase in soil organic carbon by agricultural intensification in northern China

    Get PDF
    Acknowledgements. This research was supported by National Natural Science Foundation of China (no. 31370527 and 31261140367) and the National Science and Technology Support Program of China (no. 2012BAD14B01-2). The authors gratefully thank the Huantai Agricultural Station for providing of the Soil Fertility Survey data. We also thank Zheng Liang from China Agricultural University for the soil sampling and analysis in 2011. Thanks are extended to Jessica Bellarby for helpful discussion and suggestions.Peer reviewedPublisher PD

    Topological energy gaps in the [111]-oriented InAs/GaSb and GaSb/InAs core-shell nanowires

    Full text link
    The [111]-oriented InAs/GaSb and GaSb/InAs core-shell nanowires have been studied by the 8×88\times 8 Luttinger-Kohn kp\vec{k}\cdot\vec{p} Hamiltonian to search for non-vanishing fundamental gaps between inverted electron and hole bands. We focus on the variations of the topologically nontrivial fundamental gap, the hybridization gap, and the effective gap with the core radius and shell thickness of the nanowires. The evolutions of all the energy gaps with the structural parameters are shown to be dominantly governed by quantum size effects. With a fixed core radius, a topologically nontrivial fundamental gap exists only at intermediate shell thicknesses. The maximum gap is 4.4\sim 4.4 meV for GaSb/InAs and 3.5\sim 3.5 meV for InAs/GaSb core-shell nanowires, and for the GaSb/InAs core-shell nanowires the gap persists over a wider range of geometrical parameters. The intrinsic reason for these differences between the two types of nanowires is that in the shell the electron-like states of InAs is more delocalized than the hole-like state of GaSb, while in the core the hole-like state of GaSb is more delocalized than the electron-like state of InAs, and both features favor stronger electron-hole hybridization. Since similar features of the electron- and hole-like states have been found in nanowires of other materials, it could serve as a common rule to put the hole-like state in the core while the electron-like state in the shell of a core-shell nanowire to achieve better topological properties.Comment: 10 pages, 10 figure

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM
    corecore