1,284 research outputs found
Phosphorylation of the androgen receptor is associated with reduced survival in hormonerefractory prostate cancer patients
Cell line studies demonstrate that the PI3K/Akt pathway is upregulated in hormone-refractory prostate cancer (HRPC) and can result in phosphorylation of the androgen receptor (AR). The current study therefore aims to establish if this has relevance to the development of clinical HRPC. Immunohistochemistry was employed to investigate the expression and phosphorylation status of Akt and AR in matched hormone-sensitive and -refractory prostate cancer tumours from 68 patients. In the hormone-refractory tissue, only phosphorylated AR (pAR) was associated with shorter time to death from relapse (<i>P</i>=0.003). However, when an increase in expression in the transition from hormone-sensitive to -refractory prostate cancer was investigated, an increase in expression of PI3K was associated with decreased time to biochemical relapse (<i>P</i>=0.014), and an increase in expression of pAkt<sup>473</sup> and pAR<sup>210</sup> were associated with decreased disease-specific survival (<i>P</i>=0.0019 and 0.0015, respectively). Protein expression of pAkt<sup>473</sup> and pAR<sup>210</sup> also strongly correlated (<i>P</i><0.001, c.c.=0.711) in the hormone-refractory prostate tumours. These results provide evidence using clinical specimens, that upregulation of the PI3K/Akt pathway is associated with phosphorylation of the AR during development of HRPC, suggesting that this pathway could be a potential therapeutic target
Mammalian Genes Preferentially Co-Retained in Radiation Hybrid Panels Tend to Avoid Coexpression
Coexpression has been frequently used to explore modules of functionally related genes in eukaryotic genomes. However, we found that genetically interacting mammalian genes identified through radiation hybrid (RH) genotypes tend not to be coexpressed across tissues. This pattern remained unchanged after controlling for potential confounding factors, including chromosomal linkage, chromosomal distance, and gene duplication. Because >99.9% of the genetically interacting genes were identified according to the higher co-retention frequencies, our observation implies that coexpression is not necessarily an indication of the need for the co-presence of two genes in the genome, which is a prerequisite for cofunctionality of their coding proteins in the cell. Therefore, coexpression information must be applied cautiously to the exploration of the functional relatedness of genes in a genome
Epigenetic Dysregulation in Mesenchymal Stem Cell Aging and Spontaneous Differentiation
BACKGROUND: Mesenchymal stem cells (MSCs) hold great promise for the treatment of difficult diseases. As MSCs represent a rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular mechanisms involved have been poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Human MSCs in early and late passages were examined for their expression of genes involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals, plays a key role in regulating MSC aging and differentiation
Exploring corrections to the optomechanical Hamiltonian
We compare two approaches for deriving corrections to the “linear model” of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law’s microscopic model, which we take as the “true” system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model
Characterization of an Nmr Homolog That Modulates GATA Factor-Mediated Nitrogen Metabolite Repression in Cryptococcus neoformans
Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis
Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients
We investigated the correlation between the expression and localisation of Akt-1, Akt-2, Akt-3, phospho-Akt proteins and the clinicopathological parameters in 63 prostate cancer specimens. More than 60% of cancerous tissues overexpressed Akt-1, Akt-2 or Akt-3. Cytoplasmic Akt-1 expression was correlated with a higher risk of postoperative prostate-specific antigen (PSA) recurrence and shorter PSA recurrence interval. Cytoplasmic Akt-2 did not show any significant correlation with clinicopathological parameters predicting outcomes. Cytoplasmic Akt-3 was associated with hormone-refractory disease progression and extracapsular invasion. Nuclear Akt-1 and Akt-2 expression were correlated with favourable outcome parameters such as absence of lymph node and perineural invasion. Kaplan–Meier analysis and Cox regression model also showed that Akt-1 and Akt-2, but not Akt-3 or phospho-Akt was associated with a significantly higher risk of PSA recurrence. In contrast, nuclear Akt-1 was significantly associated with a lower risk of PSA recurrence. Multivariate analysis revealed that clinical stage, Gleason score and the combined cytoplasmic nuclear Akt-1 marker in cancerous tissues were significant independent prognostic factors of PSA recurrence. This is the first report demonstrating in patients with prostate cancer and the particular role of Akt-1 isoform expression as a prognostic marker depending of its localisation
Geographical Detector-Based Risk Assessment of the Under-Five Mortality in the 2008 Wenchuan Earthquake, China
On 12 May, 2008, a devastating earthquake registering 8.0 on the Richter scale occurred in Sichuan Province, China, taking tens of thousands of lives and destroying the homes of millions of people. Many of the deceased were children, particular children less than five years old who were more vulnerable to such a huge disaster than the adult. In order to obtain information specifically relevant to further researches and future preventive measures, potential risk factors associated with earthquake-related child mortality need to be identified. We used four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) based on spatial variation analysis of some potential factors to assess their effects on the under-five mortality. It was found that three factors are responsible for child mortality: earthquake intensity, collapsed house, and slope. The study, despite some limitations, has important implications for both researchers and policy makers
The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer’s spent grain
Brewer’s spent grain components (cellulose,
hemicellulose and lignin) were fractionated in a
two-step chemical pretreatment process using dilute
sulfuric acid and sodium hydroxide solutions. The
cellulose pulp produced was hydrolyzed with a
cellulolytic complex, Celluclast 1.5 L, at 45 ºC to
convert the cellulose into glucose. Several conditions
were examined: agitation speed (100, 150 and
200 rpm), enzyme loading (5, 25 and 45 FPU/g
substrate), and substrate concentration (2, 5 and 8%
w/v), according to a 2 3 full factorial design aiming to
maximize the glucose yield. The obtained results
were interpreted by analysis of variance and response
surface methodology. The optimal conditions for
enzymatic hydrolysis of brewer’s spent grain were
identified as 100 rpm, 45 FPU/g and 2% w/v substrate.
Under these conditions, a glucose yield of
93.1% and a cellulose conversion (into glucose and
cellobiose) of 99.4% was achieved. The easiness of
glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion
processes.Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES)Fundação de Amparo
à Pesquisa do Estado de São Paulo), Brazil. Novozymes ( FAPESP )Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq
- …