16,171 research outputs found
On the Connection Between Momentum Cutoff and Operator Cutoff Regularizations
Operator cutoff regularization based on the original Schwinger's proper-time
formalism is examined. By constructing a regulating smearing function for the
proper-time integration, we show how this regularization scheme simulates the
usual momentum cutoff prescription yet preserves gauge symmetry even in the
presence of the cutoff scales. Similarity between the operator cutoff
regularization and the method of higher (covariant) derivatives is also
observed. The invariant nature of the operator cutoff regularization makes it a
promising tool for exploring the renormalization group flow of gauge theories
in the spirit of Wilson-Kadanoff blocking transformation.Comment: 28 pages in plain TeX, no figures. revised and expande
Spin relaxation in a GaAs quantum dot embedded inside a suspended phonon cavity
The phonon-induced spin relaxation in a two-dimensional quantum dot embedded
inside a semiconductor slab is investigated theoretically. An enhanced
relaxation rate is found due to the phonon van Hove singularities. Oppositely,
a vanishing deformation potential may also result in a suppression of the spin
relaxation rate. For larger quantum dots, the interplay between the spin orbit
interaction and Zeeman levels causes the suppression of the relaxation at
several points. Furthermore, a crossover from confined to bulk-like systems is
obtained by varying the width of the slab.Comment: 5 pages, 4 figures, to apper in Phys. Rev. B (2006
Enhanced contribution to quark and neutron electric dipole moments with small mixing of right-handed currents and CKM CP violation
We study the light quark and the neutron electric dipole moments (EDMs) under
the assumptions that the CP source is still in the usual CKM matrix and that
there is a small mixing of right-handed charged currents in the quark sector.
We find that the EDMs arise already at two loop order that are much larger than
the standard model (SM) result even for a small mixing.Comment: 9 pages, revtex, axodraw.sty, 1 figure, published version in Phys.
Rev. D. References updated, minor corrections and typos fixe
On the stability of two-chunk file-sharing systems
We consider five different peer-to-peer file sharing systems with two chunks,
with the aim of finding chunk selection algorithms that have provably stable
performance with any input rate and assuming non-altruistic peers who leave the
system immediately after downloading the second chunk. We show that many
algorithms that first looked promising lead to unstable or oscillating
behavior. However, we end up with a system with desirable properties. Most of
our rigorous results concern the corresponding deterministic large system
limits, but in two simplest cases we provide proofs for the stochastic systems
also.Comment: 19 pages, 7 figure
Completeness and consistency of renormalisation group flows
We study different renormalisation group flows for scale dependent effective
actions, including exact and proper-time renormalisation group flows. These
flows have a simple one loop structure. They differ in their dependence on the
full field-dependent propagator, which is linear for exact flows. We
investigate the inherent approximations of flows with a non-linear dependence
on the propagator. We check explicitly that standard perturbation theory is not
reproduced. We explain the origin of the discrepancy by providing links to
exact flows both in closed expressions and in given approximations. We show
that proper-time flows are approximations to Callan-Symanzik flows. Within a
background field formalism, we provide a generalised proper-time flow, which is
exact. Implications of these findings are discussed.Comment: 33 pages, 15 figures, revtex, typos corrected, to be published in
Phys.Rev.
Elliptic flow in proton-proton collisions at 7 TeV
The angular correlations measured in proton-proton collisions at 7 TeV are
decomposed into contributions from back to back emission and elliptic flow.
Modeling the dominant term in the correlation functions as a momentum
conservation effect or as an effect of the initial transverse velocity of the
source, the remaining elliptic flow component can be estimated. The elliptic
flow coefficient extracted from the CMS Collaboration data is 0.04-0.08. No
additional small-angle, ridge-like correlations are needed to explain the
experimental data
On the Ground State of Two Flavor Color Superconductor
The diquark condensate susceptibility in neutral color superconductor at
moderate baryon density is calculated in the frame of two flavor
Nambu-Jona-Lasinio model. When color chemical potential is introduced to keep
charge neutrality, the diquark condensate susceptibility is negative in the
directions without diquark condensate in color space, which may be regarded as
a signal of the instability of the conventional ground state with only diquark
condensate in the color 3 direction.Comment: 4 pages, 2 figure
- …