25,217 research outputs found

    Metal-Insulator Transition of the LaAlO3-SrTiO3 Interface Electron System

    Full text link
    We report on a metal-insulator transition in the LaAlO3-SrTiO3 interface electron system, of which the carrier density is tuned by an electric gate field. Below a critical carrier density n_c ranging from 0.5-1.5 * 10^13/cm^2, LaAlO3-SrTiO3 interfaces, forming drain-source channels in field-effect devices are non-ohmic. The differential resistance at zero channel bias diverges within a 2% variation of the carrier density. Above n_c, the conductivity of the ohmic channels has a metal-like temperature dependence, while below n_c conductivity sets in only above a threshold electric field. For a given thickness of the LaAlO3 layer, the conductivity follows a sigma_0 ~(n - n_c)/n_c characteristic. The metal-insulator transition is found to be distinct from that of the semiconductor 2D systems.Comment: 4 figure

    InGaAs implant-free quantum-well MOSFETs: performance evaluation using 3D Monte Carlo simulation

    Get PDF
    In this paper we use numerical simulations to evaluate the performance of III-V Implant-Free Quantum-Well (IFQW) MOSFET devices that offer simultaneously high channel mobility, high drive current and excellent electrostatic integrity. Using 3D Monte Carlo simulations we show that to fully understand the performance of this device architecture, Fermi-Dirac statistics and quantum-corrections must be considered to account for the impact of low density-of-states and quantum confinement in the channel layer respectively

    DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration.

    Get PDF
    Deleted in liver cancer 1 (DLC1) is a RhoGTPase activation protein-containing tumor suppressor that associates with various types of cancer. Although DLC2 shares a similar domain structure with that of DLC1, the function of DLC2 is not well characterized. Here, we describe the expression and ablation of DLC2 in mice using a reporter-knockout approach. DLC2 is expressed in several tissues and in endothelial cells (ECs) of blood vessels. Although ECs and blood vessels show no histological abnormalities and mice appear overall healthy, DLC2-mutant mice display enhanced angiogenic responses induced by matrigel and by tumor cells. Silencing of DLC2 in human ECs has reduced cell attachment, increased migration, and tube formation. These changes are rescued by silencing of RhoA, suggesting that the process is RhoA pathway dependent. These results indicate that DLC2 is not required for mouse development and normal vessel formation, but may protect mouse from unwanted angiogenesis induced by, for example, tumor cells

    A novel route to phase formation of cobalt oxyhydrates using KMnO4 as an oxidizing agent

    Full text link
    We have first succeefully synthesized the sodium cobalt oxyhydrate superconductors using KMnO4 as a de-intercalating and oxidizing agent. It is a novel route to form the superconductive phase of NaxCoO2.yH2O without resorting to the commonly used Br2/CH3CN solution. The role of the KMnO4 is to de-intercalate the Na+ from the parent compound Na0.7CoO2 and oxidize the Co ion as a result. The higher molar ratio of KMnO4 relative to the sodium content tends to remove more Na+ from the parent compound and results in a slight expansion of the c-axis in the unit cell. The superconducting transition temperature is 4.6-3.8 K for samples treated by the aqueous KMnO4 solution with the molar ratio of KMnO4 relative to the sodium content in the range of 0.3 and 2.29.Comment: 10 pages, 3 figure

    Validity and reliability of a phone App and stopwatch for the measurement of 505 change of direction performance: a test-retest study design

    Get PDF
    Purpose: The aim of this study was to explore the validity and reliability of a phone app (named: COD timer) and stopwatches for the measurement of change of direction (COD) performance. Methods: Sixty-two youth basketball players (age: 15.9 ± 1.4 yrs, height: 178.8 ± 11.0 cm, body mass: 70.0 ± 14.1 kg) performed six trials of 505 COD test (with the left side being the plant leg first, then the right side). The completion time was measured simultaneously via timing gates (with error correction processing algorithms), the phone app and stopwatches. Results: There was an almost perfect correlation and agreement between timing gates and COD timer (r = 0.978; SEE = 0.035 s; LoA =-0.08~0.06 s), but a lower correlation and agreement between timing gates and stopwatch (r = 0.954; SEE = 0.050 s; LoA =-0.17~0.04 s) with statistical significance in completion time (ES = 1.29, 95%CI: 1.15-1.43, p < 0.01). The coefficient of variation revealed similar level of dispersion between the three timing devices (timing gates: 6.58%; COD timer: 6.32%; stopwatch: 6.71%). Inter-observer reliability (ICC = 0.991) and test-retest reliability (ICC = 0.998) were excellent in COD timer, while the inter-observer reliability was lower (ICC = 0.890) in the stopwatches. Conclusion: In the 505 COD test, the COD timer was able to provide a valid and reliable measurement. On the contrary, stopwatch was not recommended because of large error. Thus, if timing gates are unavailable, practitioners can adopt the COD timer app to assess 505 COD speed times

    Deformation of a Trapped Fermi Gas with Unequal Spin Populations

    Full text link
    The real-space densities of a polarized strongly-interacting two-component Fermi gas of 6^6Li atoms reveal two low temperature regimes, both with a fully-paired core. At the lowest temperatures, the unpolarized core deforms with increasing polarization. Sharp boundaries between the core and the excess unpaired atoms are consistent with a phase separation driven by a first-order phase transition. In contrast, at higher temperatures the core does not deform but remains unpolarized up to a critical polarization. The boundaries are not sharp in this case, indicating a partially-polarized shell between the core and the unpaired atoms. The temperature dependence is consistent with a tricritical point in the phase diagram.Comment: Accepted for publication in Physical Review Letter
    corecore