39,628 research outputs found

    Two-dimensional gases of generalized statistics in a uniform magnetic field

    Full text link
    We study the low temperature properties of two-dimensional ideal gases of generalized statistics in a uniform magnetic field. The generalized statistics considered here are the parafermion statistics and the exclusion statistics. Similarity in the behaviours of the parafermion gas of finite order pp and the gas with exclusion coefficient g=1/pg=1/p at very low temperatures is noted. These two systems become exactly equivalent at T=0T=0. Qumtum Hall effect with these particles as charge carriers is briefly discussed.Comment: Latex file, 14 pages, 5 figures available on reques

    Parametric generation of quadrature squeezing of mirrors in cavity optomechanics

    Full text link
    We propose a method to generate quadrature squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.Comment: 4 pages, 2 figure

    Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity

    Full text link
    We investigate the transport properties of two photons inside a one-dimensional waveguide side-coupled to a single-mode nonlinear cavity. The cavity is filled with a nonlinear Kerr medium. Based on the Laplace transform method, we present analytic solution of quantum states of the transmitted and reflected two photons, which are initially prepared in a Lorentzian wave packet. The solution reveals how quantum correlation between the two photons emerge after the scattering by the nonlinear cavity. In particular, we show that the output wave function of the two photons in position space can be localized in the relative coordinates, which is a feature that may be interpreted as a two-photon bound state in this waveguide-cavity system.Comment: 9 pages, 5 figure

    Single-particle machine for quantum thermalization

    Full text link
    The long time accumulation of the \textit{random} actions of a single particle "reservoir" on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and "coherently heated" as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.Comment: 9 pages,4 figures

    Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification

    Get PDF
    Formation of the mandible requires progressive morphologic change, proliferation, differentiation and organization of chondrocytes preceding osteogenesis. The Wnt signaling pathway is involved in regulating bone development and maintenance. Chondrocytes that are fated to become bone require Wnt to polarize and orientate appropriately to initiate the endochondral ossification program. Although the canonical Wnt signaling has been well studied in the context of bone development, the effects of non-canonical Wnt signaling in regulating the timing of cartilage maturation and subsequent bone formation in shaping ventral craniofacial structure is not fully understood.. Here we examined the role of the non-canonical Wnt signaling pathway (wls, gpc4, wnt5b and wnt9a) in regulating zebrafish Meckel's cartilage maturation to the onset of osteogenic differentiation. We found that disruption of wls resulted in a significant loss of craniofacial bone, whereas lack of gpc4, wnt5b and wnt9a resulted in severely delayed endochondral ossification. This study demonstrates the importance of the non-canonical Wnt pathway in regulating coordinated ventral cartilage morphogenesis and ossification

    Correlated two-photon scattering in cavity optomechanics

    Full text link
    We present an exact analytical solution of the two-photon scattering in a cavity optomechanical system. This is achieved by solving the quantum dynamics of the total system, including the optomechanical cavity and the cavity-field environment, with the Laplace transform method. The long-time solution reveals detailed physical processes involved as well as the corresponding resonant photon frequencies. We characterize the photon correlation induced in the scattering process by calculating the two-photon joint spectrum of the long-time state. Clear evidence for photon frequency anti-correlation can be observed in the joint spectrum. In addition, we calculate the equal-time second-order correlation function of the cavity photons. The results show that the radiation pressure coupling can induce photon blockade effect, which is strongly modulated by the phonon sideband resonance. In particular, we obtain an explicit expression of optomechanical coupling strength determining these sideband modulation peaks based on the two-photon resonance condition.Comment: 10 pages, 6 figure

    Metal-Insulator Transition of the LaAlO3-SrTiO3 Interface Electron System

    Full text link
    We report on a metal-insulator transition in the LaAlO3-SrTiO3 interface electron system, of which the carrier density is tuned by an electric gate field. Below a critical carrier density n_c ranging from 0.5-1.5 * 10^13/cm^2, LaAlO3-SrTiO3 interfaces, forming drain-source channels in field-effect devices are non-ohmic. The differential resistance at zero channel bias diverges within a 2% variation of the carrier density. Above n_c, the conductivity of the ohmic channels has a metal-like temperature dependence, while below n_c conductivity sets in only above a threshold electric field. For a given thickness of the LaAlO3 layer, the conductivity follows a sigma_0 ~(n - n_c)/n_c characteristic. The metal-insulator transition is found to be distinct from that of the semiconductor 2D systems.Comment: 4 figure

    What is Different about Government-Controlled Acquirers in Cross-Border Acquisitions?

    Get PDF
    We examine the motives for and consequences of 5,317 failed and completed cross-border acquisitions constituting $619 billion of total activity that were led by government-controlled acquirers over the period from 1990 to 2008. We benchmark this activity at the aggregate country level and also at the deal level with cross-border acquisitions involving corporate acquirers over the same period. We find that government-led deal activity is relatively more intense for geographically-closer countries, but also relatively less sensitive to differences in the level of economic development of the acquirer’s and target’s home countries, in the quality of their legal institutions and accounting standards, and to how stringent are restrictions on FDI flows in their countries. Government-led acquirers are more likely to pursue larger targets with greater growth opportunities and more financial constraints. But, the share-price reactions to the announcements of such acquisitions are not different. Among those deals involving government-controlled acquirers, we do find important differences involving sovereign wealth funds (SWFs). SWF-led acquisitions are less likely to fail, they are more likely to pursue acquirers that are larger in total assets and with fewer financial constraints, and the market reactions to SWF-led acquisitions, while positive, are statistically and economically much smaller. We discuss policy implications in terms of recent regulatory changes in the U.S. and other countries that seek to restrict foreign acquisitions by government-controlled entities.Government-controlled Acquirers, Cross-Border Acquisitions

    Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    Get PDF
    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided
    • …
    corecore