52 research outputs found

    Exploring the effects of lysozyme dietary supplementation on laying hens: performance, egg quality, and immune response

    Get PDF
    An experiment was conducted to evaluate the dietary supplementation with lysozyme's impacts on laying performance, egg quality, biochemical analysis, body immunity, and intestinal morphology. A total of 720 Jingfen No. 1 laying hens (53 weeks old) were randomly assigned into five groups, with six replicates in each group and 24 hens per replicate. The basal diet was administered to the laying hens in the control group, and it was supplemented with 100, 200, 300, or 400 mg/kg of lysozyme (purity of 10% and an enzyme activity of 3,110 U/mg) for other groups. The preliminary observation of the laying rate lasted for 4 weeks, and the experimental period lasted for 8 weeks. The findings demonstrated that lysozyme might enhance production performance by lowering the rate of sand-shelled eggs (P < 0.05), particularly 200 and 300 mg/kg compared with the control group. Lysozyme did not show any negative effect on egg quality or the health of laying hens (P > 0.05). Lysozyme administration in the diet could improve intestinal morphology, immune efficiency, and nutritional digestibility in laying hens when compared with the control group (P < 0.05). These observations showed that lysozyme is safe to use as a feed supplement for the production of laying hens. Dietary supplementation with 200 to 300 mg/kg lysozyme should be suggested to farmers as a proper level of feed additive in laying hens breeding

    Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes

    Get PDF
    The engineering of acetylenic carbon-rich nanostructures has great potential in many applications, such as nanoelectronics, chemical sensors, energy storage, and conversion, etc. Here we show the synthesis of acetylenic carbon-rich nanofibers via copper-surface- mediated Glaser polycondensation of 1,3,5-triethynylbenzene on a variety of conducting (e.g., copper, graphite, fluorine-doped tin oxide, and titanium) and non-conducting (e.g., Kapton, glass, and silicon dioxide) substrates. The obtained nanofibers (with optical bandgap of 2.51eV) exhibit photocatalytic activity in photoelectrochemical cells, yielding saturated cathodic photocurrent of ca. 10ÎŒAcm−2 (0.3–0V vs. reversible hydrogen electrode). By incorporating thieno[3,2-b]thiophene units into the nanofibers, a redshift (ca. 100 nm) of light absorption edge and twofold of the photocurrent are achieved, rivalling those of state-of- the-art metal-free photocathodes (e.g., graphitic carbon nitride of 0.1–1 ÎŒA cm−2). This work highlights the promise of utilizing acetylenic carbon-rich materials as efficient and sustainable photocathodes for water reductio

    In-Situ Transmission Electron Microscopy Studies on Advanced Materials for Micro- and Nano-Electronics

    No full text
    This PhD thesis was focused on the development of in-situ transmission electron microscopy (TEM) methodologies on advanced materials for micro- and nano-electronics. The first in-situ study was focused on time dependent dielectric breakdown (TDDB) degradation kinetics and failure mechanisms in Cu/low-k interconnect stacks. The second study investigated the stretching of patterned graphene ribbons for tuning the bandgap, and consequently the mechanical properties. In the in-situ TDDB study, the electric field was generated using a TEM holder and a source-measurement unit,while TEM imaging and electron spectroscopic imaging (ESI) were selected as techniques of choice to image the test structure and to detect possible Cu traces in the dielectrics during electrical testing. Three major TDDB-induced damage mechanisms in the “tip-to-tip” structures can occur during electrical tests. Cu migration into the low-k dielectric and SiO2 layer was only observed after forming a breach in the TaN/Ta barrier during the electricaltest. The final breakdown location depends on the complex interplay of the various steps in the degradation sequence, i.e. electronic damage,barrier material dissolution and breach, Cu diffusion and agglomeration. The experimental approach opens a novel opportunity to study the TDDB breakdown mechanism in the interconnect stacks of microelectronic products, and it could also be extended to other structures in active devices. The observed degradation mechanisms improve the understanding of reliability-limiting processes in integrated circuits and provide data for the selection of the model used for lifetime estimation. The mechanical response of patterned graphene ribbons under stretching was monitored in-situ in the TEM, and thecorresponding low-loss electron energy loss spectrum (EELS) was recorded as an attempt to reveal the tuning of the bandgap. Chemical vapor deposition (CVD) grown monolayer graphene was transferred onto a “push-to-pull” device by a modified poly (methyl methacrylate) (PMMA) method, and was patterned into ribbons by both focused ion beam (FIB) in a SEM/FIB tool and focused electron beam in a TEM. The elongation was confirmed to be about 3 % by more than 30 focused electron beam patterned graphene ribbons. To our knowledge, this experiment demonstrated here is the first one to directly measure the tensile failure strain of graphene ribbons. No bandgap opening in the in-situ stretched graphene ribbons was detected from the low-loss EELS spectrum even with an energy resolution of about 0.15 eV. Further improvement of the energy resolution may offer the possibility to directly detect the bandgap opening of strained graphene
    • 

    corecore