30 research outputs found

    NMI inhibits cancer stem cell traits by downregulating hTERT in breast cancer.

    Get PDF
    N-myc and STAT interactor (NMI) has been proved to bind to different transcription factors to regulate a variety of signaling mechanisms including DNA damage, cell cycle and epithelial-mesenchymal transition. However, the role of NMI in the regulation of cancer stem cells (CSCs) remains poorly understood. In this study, we investigated the regulation of NMI on CSCs traits in breast cancer and uncovered the underlying molecular mechanisms. We found that NMI was lowly expressed in breast cancer stem cells (BCSCs)-enriched populations. Knockdown of NMI promoted CSCs traits while its overexpression inhibited CSCs traits, including the expression of CSC-related markers, the number of CD44+CD24- cell populations and the ability of mammospheres formation. We also found that NMI-mediated regulation of BCSCs traits was at least partially realized through the modulation of hTERT signaling. NMI knockdown upregulated hTERT expression while its overexpression downregulated hTERT in breast cancer cells, and the changes in CSCs traits and cell invasion ability mediated by NMI were rescued by hTERT. The in vivo study also validated that NMI knockdown promoted breast cancer growth by upregulating hTERT signaling in a mouse model. Moreover, further analyses for the clinical samples demonstrated that NMI expression was negatively correlated with hTERT expression and the low NMI/high hTERT expression was associated with the worse status of clinical TNM stages in breast cancer patients. Furthermore, we demonstrated that the interaction of YY1 protein with NMI and its involvement in NMI-mediated transcriptional regulation of hTERT in breast cancer cells. Collectively, our results provide new insights into understanding the regulatory mechanism of CSCs and suggest that the NMI-YY1-hTERT signaling axis may be a potential therapeutic target for breast cancers

    Reassortment of high-yield influenza viruses in vero cells and safety assessment as candidate vaccine strains

    No full text
    Vaccination is the practiced and accessible measure for preventing influenza infection. Because chicken embryos used for vaccine production have various insufficiencies, more efficient methods are needed. African green monkey kidney (Vero) cells are recommended by the World Health Organization (WHO) as a safe substitute for influenza vaccine production for humans. However, the influenza virus usually had low-yield in Vero cells, which limits the usage of Vero cellular vaccines. This study used 2 high-yield influenza viruses in Vero cells: A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B) as donor viruses. It used 3 wild strain viruses to reassort new adaptation viruses, including: A/Tianjin/15/2009(H1N1), A/Fujian/196/2009(H3N2), and B/Chongqing/1384/2010(B). These three new viruses could maintain the characteristic of high-yield in Vero cells. Furthermore, they could keep the immunogenic characteristics of the original wild influenza viruses. Importantly, these viruses were shown as safe in chicken embryo and guinea pigs assessment systems. These results provide an alternative method to produce influenza vaccine based on Vero cells

    Immunogenicity and Safety of Pandemic Influenza H5N1 Vaccines in Healthy Adults through Meta-Analysis

    No full text
    Background: There are sporadic cases and local outbreaks of H5N1 avian influenza virus worldwide every year. The World Health Organization (WHO) has paid close attention to the avian influenza epidemic trend. Avian influenza vaccines (AIV) are considered to be useful when an epidemic occurs. However, the use of AIV for humans is not yet widespread. Methods: This study assessed the immunogenicity and safety of pandemic influenza H5N1 vaccines with inactivated whole virus, split virus and subunit virus vaccines for healthy adults. We searched the databases of the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Excerpata Medica Database (EMBASE) and China National Knowledge Infrastructure (CNKI). The data from randomized trials regarding the immunogenicity and safety of AIV with or without different types of adjuvants for healthy adults (with an age range from 18 to 60 years) were collected. Results: According to this study, the most effective doses of H5N1 AIV ranged from 3.75 µg to 7.5 µg Hemagglutinin (HA) antigen. Aluminium adjuvants were administered with the same vaccine dose as a no-adjuvant group and induced the same immune effects. However, novel adjuvants (MF59 and AS03) were used with a smaller dose of vaccine than the no-adjuvant groups and successfully stimulated the body to produce more effective antibodies. Conclusion: All of the H5N1 AIV surveyed in this study were well tolerated without serious adverse reactions

    Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway

    No full text
    <div><p>Autophagy is an essential component of host innate and adaptive immunity. Viruses have developed diverse strategies for evading or utilizing autophagy for survival. The response of the autophagy pathways to virus invasion is poorly documented. Here, we report on the induction of autophagy initiated by the pathogen receptor HSP90AA1 (heat shock protein 90 kDa α [cytosolic], class A member 1) via the AKT-MTOR (mechanistic target of rapamycin)-dependent pathway. Transmission electron microscopy and confocal microscopy revealed that intracellular autolysosomes packaged avibirnavirus particles. Autophagy detection showed that early avibirnavirus infection not only increased the amount of light chain 3 (LC3)-II, but also upregulated AKT-MTOR dephosphorylation. HSP90AA1-AKT-MTOR knockdown by RNA interference resulted in inhibition of autophagy during avibirnavirus infection. Virus titer assays further verified that autophagy inhibition, but not induction, enhanced avibirnavirus replication. Subsequently, we found that HSP90AA1 binding to the viral protein VP2 resulted in induction of autophagy and AKT-MTOR pathway inactivation. Collectively, our findings suggest that the cell surface protein HSP90AA1, an avibirnavirus-binding receptor, induces autophagy through the HSP90AA1-AKT-MTOR pathway in early infection. We reveal that upon viral recognition, a direct connection between HSP90AA1 and the AKT-MTOR pathway trigger autophagy, a critical step for controlling infection.</p></div

    Bufalin Inhibits hTERT Expression and Colorectal Cancer Cell Growth by Targeting CPSF4

    No full text
    Background/Aims: Bufalin can induce apoptosis in certain human cancer cell lines, but bufalin has not yet been thoroughly evaluated in colorectal cancer cells. Cleavage and polyadenylation specific factor 4 (CPSF4) and human telomerase reverse transcriptase (hTERT) play important roles in colorectal cancer growth. The aim of this study was to investigate the roles and interactions of bufalin, CPSF4 and hTERT and the effects of bufalin in human colorectal cancer. Methods: We treated LoVo and SW620 cells with bufalin to investigate the effect of bufalin on proliferation, apoptosis and migration. We verified the relationship between CPSF4 and hTERT using pulldown assays, luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays. Results: Bufalin inhibited the proliferation and migration of and induced apoptosis in LoVo and SW620 cells. We identified CPSF4 as an hTERT promoter-binding protein in colorectal cancer cells. Conclusion: Our study identified bufalin as a potential small molecule inhibitor for cancer therapy
    corecore