33 research outputs found

    In Search of the Long-Tail: Systematic Generation of Long-Tail Knowledge via Logical Rule Guided Search

    Full text link
    Since large language models have approached human-level performance on many tasks, it has become increasingly harder for researchers to find tasks that are still challenging to the models. Failure cases usually come from the long-tail distribution - data that an oracle language model could assign a probability on the lower end of its distribution. Current methodology such as prompt engineering or crowdsourcing are insufficient for creating long-tail examples because humans are constrained by cognitive bias. We propose a Logic-Induced-Knowledge-Search (LINK) framework for systematically generating long-tail knowledge statements. Grounded by a symbolic rule, we search for long-tail values for each variable of the rule by first prompting a LLM, then verifying the correctness of the values with a critic, and lastly pushing for the long-tail distribution with a reranker. With this framework we construct a dataset, Logic-Induced-Long-Tail (LINT), consisting of 200 symbolic rules and 50K knowledge statements spanning across four domains. Human annotations find that 84% of the statements in LINT are factually correct. In contrast, ChatGPT and GPT4 struggle with directly generating long-tail statements under the guidance of logic rules, each only getting 56% and 78% of their statements correct. Moreover, their "long-tail" generations in fact fall into the higher likelihood range, and thus are not really long-tail. Our findings suggest that LINK is effective for generating data in the long-tail distribution while enforcing quality. LINT can be useful for systematically evaluating LLMs' capabilities in the long-tail distribution. We challenge the models with a simple entailment classification task using samples from LINT. We find that ChatGPT and GPT4's capability in identifying incorrect knowledge drop by ~3% in the long-tail distribution compared to head distribution

    Foxp3 (-/ATT) polymorphism contributes to the susceptibility of preeclampsia.

    Get PDF
    OBJECTIVE: To evaluate the potential influence of Foxp3 polymorphism on preeclampsia (PE) susceptibility, we conducted a case-control study in Han Chinese women. METHODS: Foxp3 genotyping was determined by polymerase chain reaction with sequence-specific primers (PCR-SSP) in 156 PE patients and 252 age-frequency matched controls. Immunohistochemical staining was used to detect the expression of Foxp3 specific transcription factor in 30 PE and 30 normal pregnant women. RESULTS: The positive rate of Foxp3 expression in PE (26.67%) was significant difference from that in normal control (63.33%, P<0.05). The frequency of Foxp3-6054 TT genotype was significantly lower in PE patient than that in control. No significant difference was found in Foxp3-3279 genotypes between PE and control, as well as for the variant allele. The frequency of Foxp3-6054A/-3279C haplotype in PE was significantly higher than that in control (P<0.01), while the frequency of Foxp3 6054T/-3279C haplotype was significantly lower in PE patient than that in control (P<0.01). CONCLUSION: Our findings suggest that the immune suppression function in PE patients is weakened, which may result in the occurrence of PE. Foxp3 polymorphism (rs5902434) may be a potential contributor for the development of PE in Han Chinese women

    Novel Bi-Functional 14-mer Peptides with Both Ovarian Carcinoma Cells Targeting and Magnetic Fe3O4 Nanoparticles Affinity

    No full text
    Fe3O4 magnetic nanoparticles (Fe3O4-MNPs) have attracted much interest for their potential medical applications due to their desirable magnetic properties. However, their potential cytotoxicity, high RES clearance in circulation, and nonspecific distribution in tissue might be the main obstacles in practice. In the present study, a novel bi-functional 14-mer peptide with both ovarian carcinoma cells targeting and magnetic Fe3O4 nanoparticles affinity was designed and synthesized, and then a facile and effective modification method was developed to bestow the Fe3O4-MNPs with tumor-targeting capability via modification, using the bi-functional peptides. First, on the basis of a tumor-targeting 7-mer peptide QQTNWSL (Q-L) and another Fe3O4-MNPs-targeting 7-mer peptide TVNFKLY (T-Y)—screened by phage-displayed peptide libraries—two bi-functional 14-mer peptides sequenced as LSWNTQQ-YLKFNVT (abbreviated as LQ-YT) and QQTNWSL-YLKFNVT (QL-YT) were synthesized through combining the Q-L peptide and T-Y peptide in predetermined configurations. Their specificity for bonding with A2780 tumor cells and affinity for Fe3O4-MNPs were verified. Then the bi-functional 14-mer peptides were applied to modify the Fe3O4-MNPs. Results showed that both bi-functional 14-mer peptides could be conjugated to the Fe3O4-MNPs surface with high affinity. Immunofluorescence and Prussian blue staining assays indicated that the LQ-YT-modified Fe3O4-MNPs could specifically bond to A2780 tumor cells. In addition to our findings suggesting that more β-turns and random coils are conducive to increasing polypeptide surface area for binding and exposing the target group and bonding sites on LQ-YT to external targets, we demonstrated that the bi-functional 14-mer peptide has affinity for Fe3O4-MNPs, and that Fe3O4-MNPs, which was modified with a 14-mer peptide, could be bestowed with a targeting affinity for ovarian carcinoma cells

    Synthesis of Macroporous Magnetic Fe3O4 Microparticles Via a Novel Organic Matter Assisted Open-Cell Hollow Sphere Assembly Method

    No full text
    Macroporous magnetic Fe3O4 microparticles, which might act as both drug carriers and magnetocaloric media, were expected to have broad application prospects on magnetocaloric-responsively controlled drug release systems. A kind of macroporous magnetic Fe3O4 microparticle was prepared by an organic matter assisted open-cell hollow sphere (hollow sphere with holes on shell) assembly method in this study. 1-vinyl-2-pyrrolidinone (NVP) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) were selected as the template and the binder, respectively. Ferrous ions were specifically bound to carbonyl groups on NVP and were then reduced by NaBH4. The reduced irons underwent heterogeneous nucleation and grain growth to form Fe0/Fe3O4 microspheres consisting of a lot of nano-Fe0 grains, and were then assembled into Fe0/Fe3O4 microparticles wrapped by AMPS. Results indicate that NVP binding with ferrous ions can promote a self-polymerization process and the formation of Fe0/Fe3O4 microspheres, while AMPS enwrapping around the resultant microspheres can facilitate their assembly into larger aggregates. As a result, macroporous Fe3O4 microparticles composed of several open-cell hollow Fe3O4 microspheres can be obtained under a Kirkendall-controlled oxidation. Moreover, these as-prepared macroporous Fe3O4 microparticles possess a narrow particle size distribution and exhibit ferromagnetism (Ms = 66.14 emu/g, Mr = 6.33 emu/g, and Hc = 105.32 Oe). Our work, described here, would open up a novel synthesis method to assemble macroporous magnetic Fe3O4 microparticles for potential application in magnetocaloric-responsively controlled drug release systems

    Allele and genotyping frequencies of Foxp3-3279 and -6054 in PE and control groups.

    No full text
    <p>Allele and genotyping frequencies of Foxp3-3279 and -6054 in PE and control groups.</p

    Foxp3-6054 ATT allele in Agarose gel electrophoresis.

    No full text
    <p>Lane 1 showed the β-Actin, Lane 2 and 4 showed the positive PCR products amplified by group del primer (F1 primer); Lane 6 showed the negative PCR products amplified by group del primer. Lane 5 and 7 showed the positive PCR products amplified by group ATT primer (F2 primer); Lane 3 showed the negative PCR products amplified by group ATT primers; Lane M: DNA marker.</p
    corecore