71 research outputs found

    Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages

    Get PDF
    International audienceReactive Oxygen/Nitrogen Species (ROS/RNS) produced by macrophages inside their phagolysosomes are closely related to immunity and inflammation by being involved in the removal of pathogens, altered cells, etc. The existence of a homeostatic mechanism regulating the ROS/RNS amounts inside phagolysosomes has been invoked to account for the efficiency of this crucial process but this could never be unambiguously documented. In this work, intracellular electrochemical analysis with platinized nanowires electrodes (Pt-NWEs) allowed monitoring ROS/RNS effluxes with sub-millisecond resolution from individual phagolysosomes randomly impacting onto the electrode inserted inside a living macrophage. This evidenced for the first time that the consumption of ROS/RNS by their oxidation at the nanoelectrode surface stimulates the production of significant ROS/RNS amounts inside phagolysosomes. These results established the existence of the long-time postulated ROS/RNS homeostasis and allowed quantifying its kinetics and efficiency. ROS/RNS concentrations may then be maintained at sufficiently high levels for sustaining proper pathogen digestion rates without endangering the macrophage internal structures

    Wolfberry genomes and the evolution of Lycium (Solanaceae)

    Get PDF
    AbstractWolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.</jats:p

    The Euscaphis japonica genome and the evolution of malvids

    Get PDF
    Malvids is one of the largest clades of rosids, includes 58 families and exhibits remarkable morphological and ecological diversity. Here, we report a high-quality chromosome-level genome assembly for Euscaphis japonica, an early-diverging species within malvids. Genome-based phylogenetic analysis suggests that the unstable phylogenetic position of E. japonica may result from incomplete lineage sorting and hybridization event during the diversification of the ancestral population of malvids. Euscaphis japonica experienced two polyploidization events: the ancient whole genome triplication event shared with most eudicots (commonly known as the c event) and a more recent whole genome duplication event, unique to E. japonica. By resequencing 101 samples from 11 populations, we speculate that the temperature has led to the differentiation of the evergreen and deciduous of E. japonica and the completely different population histories of these two groups. In total, 1012 candidate positively selected genes in the evergreen were detected, some of which are involved in flower and fruit development. We found that reddening and dehiscence of the E. japonica pericarp and long fruit-hanging time promoted the reproduction of E. japonica populations, and revealed the expression patterns of genes related to fruit reddening, dehiscence and abscission. The key genes involved in pentacyclic triterpene synthesis in E. japonica were identified, and different expression patterns of these genes may contribute to pentacyclic triterpene diversification. Our work sheds light on the evolution of E. japonica and malvids, particularly on the diversification of E. japonica and the genetic basis for their fruit dehiscence and abscission.DATA AVAILABILITY STATEMENT : All sequences described in this manuscript have been submitted to the National Genomics Data Center (NGDC). The raw whole-genome data of E. japonica have been deposited in BioProject/GSA (https://bigd.big.ac.cn/gsa.) under the accession codes PRJCA005268/CRA004271, and the assembly and annotation data have been deposited at BioProject/GWH (https://bigd.big.ac.cn/gwh) under the accession codes PRJCA005268/GWHBCHS00000000. The raw transcriptomes data of E. japonica have been deposited in BioProject/GSA (https://bigd.big.ac.cn/gsa.) under the accession codes PRJCA005298/CRA004272.SUPPLEMENTARY MATERIAL 1: Supplementary Note 1. Chromosome number assessment. Supplementary Note 2. Whole-genome duplication identification and dating. Supplementary Note 3. Observation of E. japonica seed dispersal. Supplementary Note 4. Determination of pentacyclic triterpene substances. Figure S1. Cytogenetic analysis of E. japonica. Figure S2. Genome size and heterozygosity of E. japonica estimation using 17 k-mer distribution. Figure S3. Interchromosomal of Hi-C chromosome contact map of E. japonica genome. Figure S4. Gene structure prediction results of E. japonica and other species. Figure S5. Venn diagram shows gene families of malvids. Figure S6. Phylogenetic tree constructed by chloroplast genomes from 17 species. Figure S7. Concatenated- and ASTRAL-based phylogenetic trees. Figure S8. Ks distribution in E. japonica. Figure S9. Distributions of synonymous substitutions per synonymous site (Ks) of one-to-one orthologs identified between E. japonica and P. trichocarpa and V. vinifera. Figure S10. Population structure plot. Figure S11. Fixation index (FST) heat map among E. japonica populations. Figure S12. Phylogenetic analysis of MADS-box genes from O. sativa, A. thaliana, E. japonica, and T. cacao. Figure S13. Observation the fruit development. Figure S14. Animal seed dispersal. Figure S15. Anthocyanin biosynthesis in E. japonica fruits. Figure S16. Carotenoid accumulation and the chlorophyll degradation in E. japonica fruits. Figure S17. Expression profile of fruit dehiscence-related genes. Figure S18. Phylogenetic tree of DELLA genes obtained from six malvids species. Figure S19. Phylogenetic tree of CAD genes obtained from seven malvids species. Figure S20. Expression pattern of fruit abscission-related genes. Figure S21. Structure of pentacyclic triterpene compounds separated from Euscaphis. Figure S22. Phylogenetic tree of HMGR gene in plants. Figure S23. Phylogenetic tree of P450s gene family obtained from A. thaliana and E. japonica.SUPPLEMENTARY MATERIAL 2: Table S1. Assembled statistics of E. japonica genome. Table S2. Evaluation of E. japonica genome assembly. Table S3. Chromosome length of E. japonica. Table S4. Prediction of gene structures of the E. japonica genome. Table S5. Statistics on the function annotation of the E. japonica genome. Table S6. Non-coding RNA annotation results of E. japonica genome. Table S7. BUSCO assessment of the E. japonica annotated genome. Table S8. Statistic of repeat sequence in E. japonica genome. Table S9. Gene-clustering statistics for 17 species. Table S10. KEGG enrichment result of unique genes families of E. japonica. Table S11. Gene Ontology (GO) and KEGG enrichment result of significant shared by malvids species gene families. Table S12. Gene Ontology (GO) and KEGG enrichment result of significant expansion of E. japonica gene families. Table S13. Gene Ontology (GO) enrichment result of significant contraction of E. japonica gene families. Table S14. Statistical sampling population information. Table S15. Statistics population resequencing information. Table S16. Statistical nucleotide polymorphisms in the populations. Table S17. Candidate positive selection genes (PSGs) in the evergreen population. Table S18. Candidate positive selection genes (PSGs) in the deciduous population. Table S19. Gene Ontology (GO) enrichment result of significant PSGs in the evergreen population. Table S20. List of MADS-box genes identified in E. japonica. Table S21. Genes involved in anthocyanin biosynthesis, carotenoid biosynthesis, and chlorophyll degradation. Table S22. Identification fruit dehiscence-related genes in E. japonica. Table S23. Genes related to lignin synthesis that are highly expressed during pericarp dehiscence. Table S24. Gene expression levels (FPKMs) of fruit abscission-related genes in pericarp. Table S25. Triterpene compounds separated from Euscaphis. Table S26. Number of putative pentacyclic triterpene-related genes in the malvids species. Table S27. Identified pentacyclic triterpene synthesis-related genes in E. japonica genome. Table S28. Statistical simple sequence repeat.Fund for Excellent Doctoral Dissertation of Fujian Agriculture and Forestry University, China; Fujian Provincial Department of Science E. japonica Evolution and Selection of Ornamental Medicinal Resources, China; the Project of Forestry Peak Discipline at Fujian Agriculture and Forestry University, China; the Collection, Development and Utilization of Eascaphis konlshli Germplasm Resources; the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program and from Ghent University.https://onlinelibrary.wiley.com/journal/1365313xam2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Tubeless video-assisted thoracic surgery for pulmonary ground-glass nodules: expert consensus and protocol (Guangzhou)

    Get PDF

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    The complete chloroplast genome sequence of Rhodiola kirilowii (Crassulaceae), a precious Tibetan drug in China

    No full text
    Rhodiola kirilowii is a precious Tibetan drug and an extremely endangered plant. In recent years, the number of individuals of R. kirilowii has decreased sharply. Here, we determined and analyzed the complete chloroplast genome of R. kirilowii. The cpDNA was 150,905 bp in length, containing a pair of inverted repeats (IRs) of 25,864 bp each separated by a large and small single copy (LSC and SSC) regions of 82,131 bp and 17,046 bp, respectively. The genome contained 84 protein-coding genes, 8 rRNA genes, and 36 tRNA genes. The overall GC content of the chloroplast genome was 37.8%, whereas the corresponding values of the LSC, SSC, and IR regions were 35.8, 31.7 and 42.9%, respectively. A maximum likelihood (ML) phylogenetic analysis demonstrated that Rhodiola sacra and Rhodiola crenulata were clustered into one clade with strong support values, indicating their closer relationship

    The complete chloroplast genome sequence of Rhodiola sacra (Prain ex Hamet) S. H. Fu

    No full text
    Rhodiola sacra (Prain ex Hamet) S. H. Fu is a traditional natural plant pharmaceutical with anti-hypoxia effect and mainly distributed in Yunnan and Tibet (China). The complete chloroplast sequence of R. sacra was determined in our study. The cpDNA was 150,941 bp in length, containing a pair of inverted repeats (IRs) of 25,873 bp each separated by a large and small single copy (LSC and SSC) regions of 82,161 bp and 17,034 bp, respectively. The genome contained 84 protein coding genes, eight rRNA genes and 36 tRNA genes. Phylogenetic tree revealed that R. sacra closely related to Rhodiola kirilowii and Rhodiola crenulata

    Pharmacokinetics and tissue distribution study of herpetotriol in rats by ultrahigh-performance liquid chromatography with tandem mass spectrometry

    No full text
    Herpetotriol, a typical lignan in Herpetospermum pedunculosum Wall’s seeds that has long been used to treat icterhepatitis and indigestion and other related diseases in Tibet, is of potential hepatoprotection. This study aims to study the pharmacokinetics features of herpetotriol, including the blood drug concentration – time curve and tissue distribution. The ultrahigh-performance liquid chromatography with tandem mass spectrometry method was established to detect herpetotriol concentration in plasma and tissues, and the method showed good linearity from 10 to 2000 ng/mL (r ≥ 0.9972) and sensitivity (≥10 ng/mL). Our blood drug concentration – time curve indicated that herpetotriol was distributed quickly in rats with a Tmax value at about 0.083 h and eliminated rapidly with a clearance rate at 98.13 ± 8.05 and 137.04 ± 9.48 L·h–1·kg–1 with doses of 5 and 2.5 mg/kg, respectively. Although herpetotriol was detectable in all tested tissues, it has a higher concentration in liver than in heart, lung, spleen, and kidney, which is in line with its hepatoprotection. The pharmacokinetics features uncovered by the present study could provide more information for future pharmacological and toxicological study of herpetotriol.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore