127 research outputs found

    Bilateral Network with Residual U-blocks and Dual-Guided Attention for Real-time Semantic Segmentation

    Full text link
    When some application scenarios need to use semantic segmentation technology, like automatic driving, the primary concern comes to real-time performance rather than extremely high segmentation accuracy. To achieve a good trade-off between speed and accuracy, two-branch architecture has been proposed in recent years. It treats spatial information and semantics information separately which allows the model to be composed of two networks both not heavy. However, the process of fusing features with two different scales becomes a performance bottleneck for many nowaday two-branch models. In this research, we design a new fusion mechanism for two-branch architecture which is guided by attention computation. To be precise, we use the Dual-Guided Attention (DGA) module we proposed to replace some multi-scale transformations with the calculation of attention which means we only use several attention layers of near linear complexity to achieve performance comparable to frequently-used multi-layer fusion. To ensure that our module can be effective, we use Residual U-blocks (RSU) to build one of the two branches in our networks which aims to obtain better multi-scale features. Extensive experiments on Cityscapes and CamVid dataset show the effectiveness of our method

    Using SAR Images to Detect Ships From Sea Clutter

    No full text

    Mapping the 2021 October Flood Event in the Subsiding Taiyuan Basin By Multi-Temporal SAR Data

    Get PDF
    A flood event induced by heavy rainfall hit the Taiyuan basin in north China in early October of 2021. In this study, we map the flood event process using the multi-temporal synthetic aperture radar (SAR) images acquired by Sentinel-1. First, we develop a spatiotemporal filter based on low-rank tensor approximation (STF-LRTA) for removing the speckle noise in SAR images. Next, we employ the classic log-ratio change indicator and the minimum error threshold algorithm to characterize the flood using the filtered images. Finally, we relate the flood inundation to the land subsidence in the Taiyuan basin by jointly analyzing the multi-temporal SAR change detection results and interferometric SAR (InSAR) time-series measurements (pre-flood). The validation experiments compare the proposed filter with the Refined-Lee filter, Gamma filter, and an SHPS-based multi-temporal SAR filter. The results demonstrate the effectiveness and advantage of the proposed STF-LRTA method in SAR despeckling and detail preservation, and the applicability to change scenes. The joint analyses reveal that land subsidence might be an important contributor to the flood event, and the flood recession process linearly correlates with time and subsidence magnitude.This work was financially supported by the National Natural Science Foundation of China (grant numbers 41904001 and 41774006), the China Postdoctoral Science Foundation (grant number 2018M640733), the National Key Research and Development Program of China (grant number 2019YFC1509201), and the National Postdoctoral Program for Innovative Talents (grant number BX20180220)

    Monitoring Surface Deformation Using Distributed Scatterers InSAR

    Get PDF
    In the past two decades, extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data. The introduction of distributed scatterers in Distributed Scatterers InSAR (DS-InSAR) has significantly expanded the application scenarios of InSAR geodetic measurement by increasing the number of measurement points. This study traces the history of DS-InSAR, presents the definition and characteristics of distributed scatterers, and focuses on exploring the relationships and distinctions among proposed algorithms in two crucial steps: statistically homogeneous pixel selection and phase optimization. Additionally, the latest research progress in this field is tracked and the possible development direction in the future is discussed. Through simulation experiments and two real InSAR case studies, the proposed algorithms are compared and verified, and the advantages of DS-InSAR in deformation measurement practice are demonstrated. This work not only offers insights into current trends and focal points for theoretical research on DS-InSAR but also provides practical cases and guidance for applied research

    Unsupervised Classification of Polarimetric SAR Images via Riemannian Sparse Coding

    Get PDF
    Unsupervised classification plays an important role in understanding polarimetric synthetic aperture radar (PolSAR) images. One of the typical representations of PolSAR data is in the form of Hermitian positive definite (HPD) covariance matrices. Most algorithms for unsupervised classification using this representation either use statistical distribution models or adopt polarimetric target decompositions. In this paper, we propose an unsupervised classification method by introducing a sparsity-based similarity measure on HPD matrices. Specifically, we first use a novel Riemannian sparse coding scheme for representing each HPD covariance matrix as sparse linear combinations of other HPD matrices, where the sparse reconstruction loss is defined by the Riemannian geodesic distance between HPD matrices. The coefficient vectors generated by this step reflect the neighborhood structure of HPD matrices embedded in the Euclidean space and hence can be used to define a similarity measure. We apply the scheme for PolSAR data, in which we first oversegment the images into superpixels, followed by representing each superpixel by an HPD matrix. These HPD matrices are then sparse coded, and the resulting sparse coefficient vectors are then clustered by spectral clustering using the neighborhood matrix generated by our similarity measure. The experimental results on different fully PolSAR images demonstrate the superior performance of the proposed classification approach against the state-of-the-art approachesThis work was supported in part by the National Natural Science Foundation of China under Grant 61331016 and Grant 61271401 and in part by the National Key Basic Research and Development Program of China under Contract 2013CB733404. The work of A. Cherian was supported by the Australian Research Council Centre of Excellence for Robotic Vision under Project CE140100016.

    Radargrammetric DSM generation by semi-global matching and evaluation of penalty functions

    Get PDF
    Radargrammetry is a useful approach to generate Digital Surface Models (DSMs) and an alternative to InSAR techniques that are subject to temporal or atmospheric decorrelation. Stereo image matching in radargrammetry refers to the process of determining homologous points in two images. The performance of image matching influences the final quality of DSM used for spatial-temporal analysis of landscapes and terrain. In SAR image matching, local matching methods are commonly used but usually produce sparse and inaccurate homologous points adding ambiguity to final products; global or semi-global matching methods are seldom applied even though more accurate and dense homologous points can be yielded. To fill this gap, we propose a hierarchical semi-global matching (SGM) pipeline to reconstruct DSMs in forested and mountainous regions using stereo TerraSAR-X images. In addition, three penalty functions were implemented in the pipeline and evaluated for effectiveness. To make accuracy and efficiency comparisons between our SGM dense matching method and the local matching method, the normalized cross-correlation (NCC) local matching method was also applied to generate DSMs using the same test data. The accuracy of radargrammetric DSMs was validated against an airborne photogrammetric reference DSM and compared with the accuracy of NASA’s 30 m SRTM DEM. The results show the SGM pipeline produces DSMs with height accuracy and computing efficiency that exceeds the SRTM DEM and NCC-derived DSMs. The penalty function adopting the Canny edge detector yields a higher vertical precision than the other two evaluated penalty functions. SGM is a powerful and efficient tool to produce high-quality DSMs using stereo Spaceborne SAR images

    Joint Adversarial Domain Adaptation

    Get PDF
    Domain adaptation aims to transfer the enriched label knowledge from large amounts of source data to unlabeled target data. It has raised significant interest in multimedia analysis. Existing researches mainly focus on learning domain-wise transferable representations via statistical moment matching or adversarial adaptation techniques, while ignoring the class-wise mismatch across domains, resulting in inaccurate distribution alignment. To address this issue, we propose a Joint Adversarial Domain Adaptation (JADA) approach to simultaneously align domain-wise and class-wise distributions across source and target in a unified adversarial learning process. Specifically, JADA attempts to solve two complementary minimax problems jointly. The feature generator aims to not only fool the well-trained domain discriminator to learn domain-invariant features, but also minimize the disagreement between two distinct task-specific classifiers' predictions to synthesize target features near the support of source class-wisely. As a result, the learned transferable features will be equipped with more discriminative structures, and effectively avoid mode collapse. Additionally, JADA enables an efficient end-to-end training manner via a simple back-propagation scheme. Extensive experiments on several real-world cross-domain benchmarks, including VisDA-2017, ImageCLEF, Office-31 and digits, verify that JADA can gain remarkable improvements over other state-of-the-art deep domain adaptation approaches

    Three- and four-dimensional topographic measurement and validation

    Get PDF
    This paper reports on the activities carried out in the context of “Dragon project 32278: Three- and Four-Dimensional Topographic Measurement and Validation”. The research work was split into three subprojects and encompassed several activities to deliver accurate characterization of targets on land surfaces and deepen the current knowledge on the exploitation of Synthetic Aperture Radar (SAR) data. The goal of Subproject 1 was to validate topographic mapping accuracy of various ESA, TPM, and Chinese satellite system on test sites in the EU and China; define and improve validation methodologies for topographic mapping; and develop and setup test sites for the validation of different surface motion estimation techniques. Subproject 2 focused on the specific case of spatially and temporally decorrelating targets by using multi-baseline interferometric (InSAR) and tomographic (TomoSAR) SAR processing. Research on InSAR led to the development of robust retrieval techniques to estimate target displacement over time. Research on TomoSAR was focused on testing or defining new processing methods for high-resolution 3D imaging of the interior of forests and glaciers and the characterization of their temporal behavior. Subproject 3 was focused on near-real-time motion estimation, considering efficient algorithms for the digestion of new acquisitions and for changes in problem parameterization.European Space Agenc

    Whole-genome sequencing of <em>Oryza brachyantha</em> reveals mechanisms underlying <em>Oryza</em> genome evolution

    Get PDF
    The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza
    • …
    corecore