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ABSTRACT

Domain adaptation aims to transfer the enriched label knowledge

from large amounts of source data to unlabeled target data. It

has raised significant interest in multimedia analysis. Existing re-

searches mainly focus on learning domain-wise transferable repre-

sentations via statistical moment matching or adversarial adapta-

tion techniques, while ignoring the class-wise mismatch across

domains, resulting in inaccurate distribution alignment. To ad-

dress this issue, we propose a Joint Adversarial Domain Adaptation

(JADA) approach to simultaneously align domain-wise and class-

wise distributions across source and target in a unified adversarial

learning process. Specifically, JADA attempts to solve two com-

plementary minimax problems jointly. The feature generator aims

to not only fool the well-trained domain discriminator to learn

domain-invariant features, but also minimize the disagreement

between two distinct task-specific classifiers’ predictions to syn-

thesize target features near the support of source class-wisely. As

a result, the learned transferable features will be equipped with

more discriminative structures, and effectively avoid mode collapse.

Additionally, JADA enables an efficient end-to-end training man-

ner via a simple back-propagation scheme. Extensive experiments

on several real-world cross-domain benchmarks, including VisDA-

2017, ImageCLEF, Office-31 and digits, verify that JADA can gain

remarkable improvements over other state-of-the-art deep domain

adaptation approaches.
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resentations; • Computer systems organization → Neural net-
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1 INTRODUCTION

The past decades have witnessed a resurgence of deep convolu-

tional neural networks [17], which has led to tremendous advances

across a wide range of multimedia tasks, such as media interpreta-

tion [8, 47], multimodal retrieval [22, 50] and so on. However, in

spite of the excellent learning capacity, the impressive performance

of deep networks largely relies on massive amounts of well-labeled

training data. Unfortunately, manually annotating sufficient label

information for various multimedia applications is always time-

consuming and expensive. Moreover, the well-trained deep models

may perform poorly when adapting to new datasets or tasks due

to the issues of dataset bias or domain shift [1, 2, 44]. Hence, there

is a strong motivation to leverage the enriched knowledge of a

well-annotated domain (i.e., source domain) to facilitate learning

effective models for a different label-scarce domain (i.e., target do-

main), which is commonly referred to as domain adaptation (DA).

Generally, reducing the distribution discrepancy across domains

is of vital importance to address DA problems. To this end, previ-

ous shallow DA methods are mainly based on either reweighting

samples [15, 20] or learning domain-invariant features [6, 21, 32].

Recent works [7, 46] indicate that deep neural networks are able

to learn more transferable representations by disentangling the ex-

planatory factors behind source and target data. Particularly, deep

CNNs are capable of obtaining general low-level features across

domains to some extent. But [51] reveals that deep features can

only reduce, but not remove, the cross-domain discrepancy. Hence,

deep DA approaches are explored to integrate domain adaptation

into deep learning pipelines by minimizing some statistical metrics

[29, 36, 53], such as maximum mean discrepancy [12], or explor-

ing adversarial learning techniques [10, 40, 45]. Most of them are

devoted to bridging the cross-domain gap by explicitly aligning

domain-wise distributions. Once accomplished, the model derived

in the source domain can be applied to the target domain directly.

Althoughminimizing the domain-wise difference across domains

can assist in learning deep domain-invariant representations, it may

mix up the discriminative structures inevitably. As a result, this

strategywill lead to negative alignment of the corresponding classes

across domains, and the target samples near class decision bound-

aries would be easily predicted wrongly. Therefore, to alleviate this

problem, we should align source and target domains with class
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discriminative information preserved. Besides, without considering

complex discriminative structures underlying the data, many adver-

sarial learning based deep DA approaches [10, 45] may eventually

result in mode collapse if they are not optimized appropriately.

Source Domain

Target Domain

Domain-wise Alignment

Class-wise Alignment

Joint Alignment

Figure 1: Illustration of our proposed JADA, which attempts

to conduct joint alignment across domains based on a uni-

fied adversarial learning process, by alleviating the dis-

criminative information loss and class-wise mismatching

issues caused by domain-wise and class-wise alignment ap-

proaches respectively.

Aiming to fully leverage the discriminative structures behind

source and target, Saito et al. in [39] propose a class-wise alignment

approach by taking into consideration the task-specific decision

boundaries. They exploit two task-specific classifiers as a discrim-

inator to detect target samples outside the support of the source,

and facilitate generating target features near source class-wisely.

Since class-wise alignment approaches heavily rely on the precision

of source classifier, their performance will degrade dramatically

once the domain discrepancy is tremendously large, which is com-

mon in real-world multimedia tasks. Thus, jointly mitigating the

domain-wise mismatching can further facilitate the precise class-

wise alignment across source and target.

In this paper, to overcome the aforementioned challenges, we

propose a novel Joint Adversarial Domain Adaptation (JADA) ap-

proach based on adversarial learning shown in Figure 1. In JADA,

we jointly conduct domain-wise alignment by using a domain dis-

criminator and class-wise alignment by exploring the task-specific

label predictors, since both domain-level knowledge and discrimina-

tive information are critical to secure successful domain adaptation.

To be specific, in our architecture, there are three players: a do-

main discriminator, a discrepancy discriminator consisting of two

task-specific label predictors and a feature generator, correspond-

ing to two minimax games. Both the domain discriminator and

discrepancy discriminator acquire features from the feature gen-

erator. The domain discriminator tries to distinguish the features

from source or target domains, which aims to minimize the domain

prediction loss. Meanwhile, the discrepancy discriminator manages

to correctly predict source samples, and specifically detects the

ambiguous target samples by maximizing the output discrepancy

of two label predictors. In contrast, the feature generator attempts

to simultaneously cheat the domain and discrepancy discrimina-

tors. Therefore, the feature generator could yield domain-invariant

feature representations with discriminative structures preserved.

As a result, the learned domain-invariant features can transfer the

domain-level knowledge from source to target effectively, and the

exploration of discriminative structures within the data will further

facilitate matching the class-wise distributions, which leads to a

more precise classification performance. It is worth mentioning

that, in JADA, all the training processes can be achieved in an ad-

versarial manner by introducing an efficient gradient reversal layer

(GRL) as [10] with the gradients computed by back-propagation.

To sum up, we have three-fold contributions as follows:

• A novel DA adversarial learning architecture is proposed

by jointly optimizing two minimax games with a domain

discriminator, a discrepancy discriminator and a feature gen-

erator involved. The learning process can be achieved in an

efficient end-to-end training manner via back-propagation.

• We incorporate the domain-wise and class-wise alignments

into our approach, which can be verified that they are com-

plementary to each other for DA problems. As a result, we

can alleviate the mode collapse issues and improve the trans-

fer recognition performance significantly.

• Comprehensive experiments on various cross-domain bench-

marks show that JADA outperforms the state-of-the-art

methods by a large margin. Moreover, analytical experi-

ments are conducted to further verify the effectiveness of

our approach, and the promising power towards real-world

multimedia applications.

2 RELATEDWORK

Deep domain adaptation methods concentrate on mitigating the

domain discrepancy between domains by means of powerful deep

neural networks [4, 10, 18, 24, 27, 29, 41, 46, 48]. Existing methods

can be roughly divided into two major categories: discrepancy-

based and adversarial-based methods [49].

2.1 Discrepancy-based Methods

Discrepancy-based methods mainly aim to reduce the domain shift

by minimizing some discrepancy metrics, such as maximum mean

discrepancy (MMD) [12, 27, 46], central moment discrepancy (CMD)

[52], correlation alignment (CORAL) loss [5, 42, 43] and so on.

To name a few, Tzeng et al. [46] introduced a deep domain confu-

sion (DDC) network to minimize the MMD distance of source and

target representations at the last fully-connected layer. Further, do-

main adaptation network (DAN) [27] extended DDC to incorporate

multiple kernelMMDdistances across domains among the last three

task-specific layers, which achieved better performance. To align

the joint distributions of multiple domain-specific layers, Long et al.

presented a joint adaptation network (JAN) as well as a joint MMD

criterion [29]. Different from these MMD-based methods, Sun et al.

[43] proposed a Deep CORAL method to align correlations of layer

activations in deep networks. Based on deep CORAL, [53] also min-

imized the second-order correlation statistics of the attention maps

across domains. Chen et al. [5] conducted joint domain alignment

and discriminative feature learning by adding instance-based and

center-based loss terms to the classic correlation alignment loss.

However, these methods would have limitations to deal with

complex multimodal distribution alignment without explicitly ex-

ploring the discriminative structures underlying data distributions.
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JADA could alleviate this issue and obtain fine-grained alignment

across domains via a unified adversarial learning process.

2.2 Adversarial-based Methods

Representative methods in this category focus on matching fea-

ture distributions via adversarial learning, inspired by the idea of

generative adversarial networks [11], which has become an increas-

ing popular idea for addressing DA problems through an trainable

adversarial manner.

Specifically, the domain-adversarial neural networks (DANN)

[10] first leveraged adversarial learning between the domain clas-

sifier and feature generator to learn domain-invariant represen-

tations by adding a simple gradient reversal layer (GRL). Further,

to address mode collapse issue, [34] presented a multi-adversarial

domain adaptation (MADA) approach by utilizing multiple domain

classifiers. Unlike these two methods, Tzeng et al. [45] summa-

rized a general adversarial adaptation framework, then proposed

an adversarial discriminative domain adaptation (ADDA) with a

GAN-based loss. In [26], coupled generative adversarial networks

(CoGAN) aimed to learn a joint distribution of multi-domain im-

ages by training two GANs. Based on CoGAN, [25] developed a

general framework for unsupervised image-to-image translation

(UNIT), and applied UNIT to DA problems by adapting the trained

source classifier to classify target unlabeled samples. By consider-

ing pixel-level and low-level domain alignment, cycle-consistent

adversarial domain adaptation (CyCADA) proposed in [14] con-

ducted both generative image space and latent representation space

alignment. Pixel-level domain adaptation (PixelDA) [3] tried to

learn a transformation in the pixel space from source to target.

[40] introduced a hierarchical adversarial deep network (HADN)

to optimize the feature-level and pixel-level features by utilizing a

hierarchical network structure. By contrast, a key improvement of

JADA over existing adversarial learning based DA methods is the

capability to jointly capture domain-level valuable knowledge and

discriminative structures, which facilitates achieving satisfactory

performance when the domain gap is large.

The most related idea to ours is Maximum Classifier Discrepancy

(MCD) proposed in [39], which leverages two distinct task-specific

decision boundaries, instead of the classical domain classifier, to

align source and target class-wisely. However, since MCD only

focuses on class-wise alignment, the performance will drop signifi-

cantly if lots of target samples are misclassified by the two source

classifiers simultaneously. JADA could effectively address this prob-

lem by matching domain-wise distributions jointly, which will im-

prove the precision of task-specific source classifiers tremendously.

Moreover, compared to MCD, JADA could optimize networks via a

simple back-propagation strategy efficiently.

3 JOINT ADVERSARIAL DOMAIN
ADAPTATION

Adversarial learning can be embedded into deep networks to effec-

tively learn transferable features across source and target domains.

Most existing adversarial DA methods explore either domain-wise

[10] or class-wise alignment [34, 39] to mitigate the domain discrep-

ancy. However, if the difference between domains is tremendously

Figure 2: (Best viewed in color.) The architecture overview

of JADA, where Gf and D are the feature generator and do-

main discriminator; Gf (xs ) and Gf (xt ) are learned features

for source and target data; Fy 1 and Fy 2 are two task-specific

label predictors; Ly , −Ldis , and Ld are the losses for label pre-

dictions, discrepancy discriminator and domain discrimina-

tor, respectively; GRL stands for a gradient reversal layer as

[10]; red and green arrows represent the data flows of source

and target data.

large, which is very common in multimedia analysis, only con-

ducting domain-wise alignment may destroy the category discrim-

inativeness of learned features. While only deploying class-wise

alignment may be restricted by the mismatched categories without

exploiting global domain knowledge. In such scenario, the cross-

domain prediction accuracy will degrade dramatically. Hence, to

jointly match domain-wise and class-wise distribution differences,

we design a novel architecture JADA to play two minimax games

in one deep neural network shown in Figure 2, which could capture

global information as well as category-wise intrinsic information to

enhance distribution matching between source and target domains.

3.1 Preliminaries and Motivation

In DA problem, we denote the source domain Ds = {(xs i ,ys i )}
ns
i=1

with ns labeled samples, and the target domain Dt = {(xt j )}
nt
j=1

with nt unlabeled samples, where ys is the corresponding label for

xs . n = ns + nt indicates the number of all the source and target

samples. Since the two domains’ distributions are different, the

goal of our method is to design a novel deep adversarial network

that enables learning features f = Gf (x) indistinguishable domain-

wisely as well as class-wisely, where Gf is the feature generator in

JADA.

Actually, there exist three technical challenges in adversarial-

based DA: (1) capturing the global domain knowledge for matching

source and target domains; (2) exploring category discriminative

structures underlying distributions for accurate class-wise align-

ment; (3) avoiding mode collapse issues encountered in adversarial
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learning. The challenges motivate our joint adversarial domain

adaptation approach. To be specific, in JADA, the adversarial learn-

ing between the feature generator and the domain discriminator

ensures the effective domain-wise alignment. Further, the adver-

sarial learning between the feature generator and the discrepancy

discriminator leads to generate target features near the support

of source class-wisely. JADA elaborately incorporates these two

adversarial learning processes into one deep architecture via op-

timizing a three-player game, and enables an efficient end-to-end

training using classical back-propagation technique.

3.2 Domain-wise Adversarial Learning
Adversarial learning [10, 34] has been successfully applied to vari-
ous DA problems, which plays a two-player game to learn domain-
wise invariant features. As shown in Figure 2, the domain discrimi-
nator D aims to distinguish source and target samples accurately.
On the contrary, the feature extractorGf is trainedwith the purpose
of confusing the domain discriminator. To reduce the distribution
shift in the shared feature space, the parameters θd of D are opti-
mized by minimizing the loss of domain discriminator while the
parameters θf ofGf are trained to maximize the domain prediction
loss. Here, we define di = 1 if x i ∈ Ds , and di = 0 if x i ∈ Dt .
In addition, to guarantee the effectiveness of source model, the
loss of the label predictors Fy1 , Fy2 on the annotated source data
is also minimized, where θy1 , θy2 are their corresponding parame-
ters. It is worth noting that, different from the classical DANN [10],
there exist two task-specific label predictors in JADA, which aim
to match class-wise distributions across domains via an adversarial
manner. Therefore, the loss function of domain-wise alignment is
formulated as:

J0(θf , θy1, θy2, θd ) =
1

2ns

2∑
j=1

ns∑
i=1

Ly (Fyj (Gf (x s i )), ys i )

−
λ

n

∑
x i ∈(Ds∪Dt )

Ld (Gd (Gf (x i )), di ), (1)

where λ is a trade-off parameter to balance the label prediction

loss Ly (·, ·) and the domain classification loss Ld (·, ·). In this paper,

the cross-entropy loss is applied.
To extract global domain-invariant features, we are seeking the

optimal parameters of θ̂f , θ̂y1 , θ̂y2 and θ̂d , which will deliver a

saddle point of Eq. (1) after the training convergence:

(θ̂d ) = argmax
θd

J0(θf , θy1, θy2, θd ), (2)

(θ̂f , θ̂y1, θ̂y2 ) = argmin
θf ,θy1 ,θy2

J0(θf , θy1, θy2, θd ). (3)

In this way, the learned features f will be indistinguishable

between domains and capture the global domain knowledge, which

has been proven to be powerful for deep DA problems.

3.3 Class-wise Adversarial Learning

In practical multimedia DA problems, only conducting domain-wise

alignment may mix up source and target samples in the learned

space and reduce the category discriminativeness to some extent,

especially for the data that are near the task-specific decision bound-

aries. Thus, in order to match source and target distributions with

discriminative information preserved, we notice that the classifica-

tion boundary given by the source classifier provides strong signals

to reveal the category structure information. Inspired by [39], we

employ two source classifiers to detect target samples that are near

the decision boundaries, which means these target samples are

likely to be misclassified by the class boundaries. JADA aims to

enforce the feature extractor Gf to generate target features near

the support of source, which could facilitate matching domains

class-wisely.

Consider two source label predictors Fy 1 and Fy 2 with different

characteristics in Figure 2. They can be initialized differently to

obtain two distinct source classifiers, which can classify source data

correctly. If we use Fy 1, Fy 2 to predict the labels of target data, these
near decision boundaries’ target samples are likely to be predicted

differently by Fy 1 and Fy 2 from an intuitive respect. Hence, in the

class-wise adversarial learning, we enforce the disagreement of

Fy 1 and Fy 2 on the predictions for target samples to be as large as

possible, which will help detect the target samples that are outside

the support of source. On the contrary, the role of feature generator

Gf is to minimize this disagreement to align source and target

class-wisely. The game process between the feature generator and

two distinct label predictors can achieve an equilibrium point via

an adversarial manner.
Specifically, we denote Fy 1 and Fy 2 to construct a discrepancy

discriminator, and the L1-norm of the disagreement between their
predictions of target sample xt as discrepancy loss:

Ldis (p
y1
t , p

y2
t ) =‖ p

y1
t − p

y2
t ‖1, (4)

where p
y1
t and p

y2
t are probabilistic outputs of Fy 1 and Fy 2 for xt ,

respectively.
Therefore, we formulate the loss function of class-wise adver-

sarial learning as:

J1(θf , θy1, θy2 ) =
1

nt

nt∑
i=1

Ldis (Fy1 (Gf (x t i )), Fy2 (Gf (x t i ))). (5)

To achieve the class-wise adversarial goals, we want the optimal

parameters θ̂f , θ̂y1 and θ̂y2 to jointly satisfy

(θ̂y1, θ̂y2 ) = argmax
θy1 ,θy2

J1(θf , θy1, θy2 ), (6)

(θ̂f ) = argmin
θf

J1(θf , θy1, θy2 ). (7)

3.4 Overall Formulation and Optimization
In this study, we simultaneously optimize two minimax problems
by considering both domain-wise and class-wise distributions align-
ment via a straightforward back-propagation way [10]. To sum-
marize the previous discussions, we obtain the overall objective
function of JADA as:

J(θf , θy1, θy2, θd ) =
1

2ns

2∑
j=1

ns∑
i=1

Ly (Fyj (Gf (x s i )), ys i )

−
λ

n

∑
x i ∈(Ds∪Dt )

Ld (Gd (Gf (x i )), di )

+
λ

nt

nt∑
i=1

Ldis (Fy1 (Gf (x t i )), Fy2 (Gf (x t i ))), (8)

Actually, Ly is the supervised loss on labeled source data, and Ld ,
Ldis denote the losses for domain-wise and class-wise distributions
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alignment respectively. If we down-weigh the coefficient of Ld ,
the target prediction will drop when the domain discrepancy is

large. While if we down-weigh the coefficient of Ldis , the category
discriminative knowledge cannot be preserved, which leads to the

target prediction accuracies decrease.
It is worth noting that, the optimization of Eq. (8) is not a simple

combination of Eq. (1) and Eq. (5), since they will derive a contradict
optimization result. To address this problem, we elaborately opti-
mize Eq. (8) with respect to the data and gradient flows of source
and target domains as:

(θ̂d ) = argmax
θd

J(θf , θy1, θy2, θd ;x s , x t ), (9)

(θ̂f ) = argmin
θf

J(θf , θy1, θy2, θd ;x s , x t ), (10)

(θ̂y1, θ̂y2 ) = argmin
θy1 ,θy2

J(θf , θy1, θy2, θd ;x s ), (11)

(θ̂y1, θ̂y2 ) = argmax
θy1 ,θy2

J(θf , θy1, θy2, θd ;x t ). (12)

Remarks: The goal of Eq. (9) is to differentiate the source and tar-

get data by minimizing the domain discriminator loss. Contrarily,

Eq. (10) aims to maximize the domain discriminator loss as well as

minimize the source prediction loss and the discrepancy discrimi-

nator loss jointly. For source data flow, θ̂y1 and θ̂y2 in Eq. (11) will

minimize the source prediction loss. While in Eq. (12), target data

flow only influences the discrepancy discriminator loss. θ̂y1 and θ̂y2
attempt to maximize the difference in terms of target predictions. It

is easy to notice that Eq. (11) and Eq. (12) are not contrary to each

other, since they are optimized with respect to different domain

data flows. In such way, Eq. (8) can be solved easily by adding a

simple GRL as shown in Figure 2. Once the model is well-trained,

the feature extractor can derive domain-invariant features with

discriminative information preserved, encouraging fine-grained

alignment across domains.

4 EXPERIMENT

In this section, we perform an extensive empirical evaluation of the

proposed approach with several state-of-the-art (SOTA) deep DA

methods on inter twinning moons 2D problems, digits and object

cross-domain classification benchmarks.

4.1 Setup

VisDA-2017 [35] is a challenging synthetic to real dataset, which

represents a large-scale cross-domain object classification bench-

mark. It contains over 280K images across 12 categories in the

training, validation and test sets. As [39], we choose the training

set as source domain which contains 152,397 synthetic images, ren-

derings 3D CAD models from different angles and under different

lighting conditions. As for target domain, we choose the validation

set collected from MSCOCO [23] that contains 55,388 real images.

ImageCLEF1 is a dataset for ImageCLEF 2014 domain adapta-

tion challenge, which is organized by selecting 12 common classes

from datasets: Caltech-256 (C), ImageNet ILSVRC2012 (I), and PAS-

CAL VOC2012 (P). We use all datasets as three domains and perform

six cross-domain tasks.

1http://imageclef.org/2014/adaptation

Office-31 [38] is a popular benchmark for visual DA, compris-

ing 31 classes of 4,110 images drawn from three distinct domains:

Amazon (A), DSLR (D) and Webcam (W). Specifically, Amazon con-

sists of images downloaded from the online web merchants. DSLR

includes high-resolution images captured by a digital SLR camera

while Webcam contains low-resolution images recorded by a web

camera. We evaluate our method on three cross-domain tasks: A

→W, D→W, and W→ D as [10].

Digits Datasets contain five standard digital datasets: MNIST

[19],MNIST_M [10], USPS [16], Street ViewHouseNumbers (SVHN)

[31], and synthetic digits dataset (SYN) [10]. They all consist 10

classes of digits. We assess five adaptation scenarios: SVHN →

MNIST, SYN → MNIST, MNIST → USPS, USPS → MNIST, and

MNIST→MNIST_M.

4.2 Implementation Details

For a fair comparison, we adopt ResNet-101 [13] model pre-trained

on ImageNet [37] as base network following the protocol in [39]

for VisDA-2017. We regard the pre-trained model as the feature

network and substitute the last fully-connected layer by three-

layered fully-connected networks as discriminator networks with

random initialization. We utilize mini-batch SGD optimizer with

momentum 0.9 and learning rate 5 × 10−4. All layers are updated

with the same learning rate as suggested in [39]. In addition, we

fix λ = 1 throughout all experiments in this paper since JADA

performs stably under different parameter settings.

For the experiments on ImageCLEF and Office-31, we follow

the standard protocols as [9, 34] and evaluate the performance of

ResNet-50 model that pre-trained on ImageNet. Similarly, the last

fully-connected layer is replaced by three-layered fully-connected

networks. The discriminator networks are trained from scratch

with learning rate 10 times that of the base learning rate as [34].

And we also adopt mini-batch SGD with momentum 0.9, learning

rate 1 × 10−3 and learning rate annealing strategy as [10]. For the

experiments on digital benchmarks, we employ the same network

architectures for the discriminator and feature generator networks

provided by [39]. Also, we adopt mini-batch SGD with momentum

0.9, learning rate 1 × 10−3.

Note that all the above methods are implemented via Pytorch.

For reducing parameter sensitivity and easing the selection of

models like [9, 34], we adopt a progressive strategy for the dis-

criminators, gradually increasing λ from 0 to 1 by a schedule [9]:

λp =
2

1+exp(−δ×p)
− 1, where δ = 10 is fixed and p is the train-

ing process linearly changing from 0 to 1. We adopt all labeled

source data and all unlabeled target data and report the average

classification accuracy of each task based on 3 random experiments.

4.3 Results

We compare our proposed model against multiple SOTA unsuper-

vised deep DA methods, including DDC [46], DAN [27], JAN [29],

RTN [28], JDDA [5], CMD [52], DANN [10], MADA [34], ADDA

[45], CoGAN [26], UNIT [25], CyCADA [14], PixelDA [3], HADN

[40] and MCD [39]. Note that the presented results of baselines are

directly reported from their corresponding papers if the experiment

settings are the same.
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Table 1: Accuracy(%) on VisDA-2017 for unsupervised DA (ResNet-101).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DAN [27] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [10] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MCD [39] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

JADA 91.9 78.0 81.5 68.7 90.2 84.1 84.0 73.6 88.2 67.2 79.0 38.0 77.0

Experiment results on VisDA-2017: Table 1 reports the re-

sults on VisDA-2017. The first line shows accuracies when the

unadapted source classifier is directly applied to target domain.

We can clearly observe that our model performs better than the

Source Only model in all object categories, while the domain-wise

alignment based methods perform worse in several categories, i.e.,

car and truck. In addition, our model also outperforms the best

baseline MCD [39] by a large margin. An interpretation is that

there exist large domain-wise and class-wise distribution discrep-

ancies between this challenging synthetic to real image adaptation

task. Although task-specific decision boundaries are utilized in

MCD, it is still not enough to ideally align source and target due to

each domain’s characteristics. Hence, it is crucial to jointly conduct

domain-wise and class-wise adaptation to align such distributions.

Table 2: Accuracy(%) on ImageCLEF for unsupervised DA

(ResNet-50).

Method I→P P→I I→C C→I C→P P→C avg.

Source Only 74.8 83.9 91.5 78.0 65.5 91.2 80.7

DAN [27] 74.5 82.2 92.8 86.3 69.2 89.8 82.5

RTN [28] 75.6 86.8 95.3 86.9 72.7 92.2 84.9

JAN [29] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

DANN [10] 75.0 86.0 96.2 87.0 74.3 91.5 85.0

MADA [34] 75.0 87.9 96.0 88.8 75.2 92.2 85.8

MCD [39] 77.3 89.2 92.7 88.2 71.0 92.3 85.1

JADA 78.2 90.1 95.9 90.8 76.8 94.1 87.7

Table 3: Accuracy(%) on Office-31 for unsupervised DA

(ResNet-50).

Method A→W D→W W → D

Source Only 68.4±0.2 96.7±0.1 99.3±0.1

DAN [27] 80.5±0.4 97.1±0.2 99.6±0.1

RTN [28] 84.5±0.2 96.8±0.1 99.4±0.1

JAN [29] 85.4±0.3 97.4±0.2 99.8±0.2

ADDA [45] 86.2±0.5 96.2±0.4 98.4±0.3

DANN [10] 82.0±0.4 96.9±0.2 99.1±0.1

MADA [34] 90.0±0.1 97.4±0.1 99.6±0.1

JDDA [5] 82.6±0.4 95.2±0.2 99.7±0.0

MCD [39] 85.7±0.5 94.7±0.2 99.3±0.2

JADA 90.5±0.1 97.5±0.3 100.0±0.0

Experiment results on ImageCLEF and Office-31: Table 2

and 3 report the accuracies for ImageCLEF and Office-31, respec-

tively. Our model outperforms the comparisons over most tasks. It

is desirable that JADA improves the classification accuracy on hard

tasks, i.e., A→Wwhere the source and target domains are tremen-

dously different [38]. Note that JADA also outperforms MADA [34],

which has multiple discriminators based on the number of classes,

whereas JADA only consists of two discriminators. As reported in

Table 2, the encouraging results emphasize the importance of joint

alignment for deep DA problems, and reveal that JADA is able to

learn more transferable features for effective domain adaptation.

Table 4: Accuracy(%) on Digits for unsupervised DA.

SVHN SYN MNIST USPS MNIST

Method ↓ ↓ ↓ ↓ ↓

MNIST MNIST USPS MNIST MNIST_M

Source Only 67.1 89.7±0.2 79.4 63.4 62.8±0.2

DDC [46] 71.9±0.4 89.9±0.2 - 75.8±0.3 78.4±0.1

DAN [27] 79.5±0.3 75.2±0.1 - 89.8±0.2 79.6±0.2

CMD [52] 86.5±0.3 96.1±0.2 - 86.3±0.4 85.5±0.2

DANN [10] 71.1 90.2±0.2 85.1 73.0±0.2 76.7

JDDA [5] 94.2±0.1 97.7±0.0 - 96.7±0.1 88.4±0.2

ADDA [45] 76.0±1.8 96.3±0.4 - 90.1±0.8 -

CoGAN [26] - - - 89.1±0.8 -

HADN [40] 84.9±0.1 - 91.9±0.1 96.0±0.1 -

PixelDA [3] - - 95.9 - 98.2

UNIT [25] 90.5 - 96.0 93.6 -

CyCADA [14] 90.4±0.4 - 95.6±0.2 96.5±0.1 -

MCD [39] 96.2±0.4 - 96.5±0.3 94.1±0.3 -

JADA 96.4±0.2 98.6±0.2 97.6±0.2 97.1±0.3 92.9±0.2

Experiment results on Digits: Table 4 reports the accuracies

for digital datasets. We can see that JADA is superior to competing

approaches in most scenarios. It is interesting to observe that the

adversarial-based methods (DANN, PixelDA, CyCADA, and MCD)

achieve better performance than discrepancy-based methods (DDC,

DAN, CMD, JDDA), which proves the importance of utilizing adver-

sarial training process to guide the process of domain adaptation

and thus improve the generalization performance. Furthermore, the

task-specific decision discrepancy-aware methods such as MCD

and the proposed JADA are the current leading approaches for

the digital tasks. This demonstrates the exploration of discrimina-

tive structures within the data will further lead to a more precise

classification performance.

4.4 Empirical Analysis

Inter Twinning Moons 2D Problems: In this experiment, we

compare the decision boundaries of Source Only, DANN [10], MCD

[39] and JADA on inter twinning moons 2D problems [33]. As

shown in Figure 3, red (the upper moon) and green (the lower

moon) points represent source class 0 and 1, each of which contains

100 samples. Unlabeled target samples are generated by rotating

the distribution of source with an angle of 30◦. The dark line is the

decision boundary derived by each method. To guarantee the fair-

ness of the experiment, we employ the same network architecture
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JADADANN MCDSource Only

Figure 3: (Best viewed in color.) Comparison of Source Only, DANN, MCD and JADA on inter twinning moons 2D problems.

Red and green points denote the source samples of class 0 and 1. Blue points are target samples generated from source samples

by rotating 30◦. The yellow and light blue regions are classified as class 0 and 1 by the final decision boundary, respectively.

JADADANN MCDSource Only

Figure 4: t-SNE [30] visualization of features extracted from task A → W of Office-31 by Source Only, DANN, MCD and JADA.

Blue and red points represent the source and target samples, respectively.

in [39], which consists of three-layered fully-connected networks

for the feature generator and discriminators.

We observe that Source Only model without adaptation can

correctly classify all the source samples, but suffers a significant

decrease in the performance on target data. Compared to Source

Only model, DANN performs better, since DANN utilizes domain

adversarial learning to align source and target domains. However,

DANN does not generalize well to the target samples that are far

away from the source domain. An interpretation is that only con-

ducting domain-wise alignment may destroy the discriminative

structures of the learned features. MCD is able to classify target

class 0 accurately, but performs poorly on target class 1. The rea-

sons may rely on the inaccurate prediction of two task-specific

classifiers in the beginning. By contrast, due to joint domain-wise

and class-wise alignment, JADA could adapt to the target domain

nicely and draw a correct decision boundary in almost all regions.

The performance of JADA in this experiment proves the superiority

to other compared approaches.

Feature Visualization: Figure 4 illustrates the t-SNE [30] em-

bedding of feature representations learned by Source Only, DANN,

MCD and JADA for task A→W of Office-31. The source and target

samples are not matched well with Source Only features, and better

matched with DANN features, since DANN tries to align global

distributions across domains. But the category discriminativeness

is not preserved well. Compared with DANN, MCD features can be

discriminated better. The reason is MCD aims to align source and

target class-wisely utilizing the task-specific decision boundaries.

However, there exists one cluster of source samples not having the

corresponding target samples in the right part of the figure. This

phenomenon implies that when target samples are misclassified

by the two classifiers simultaneously in the beginning, MCD may

not be able to predict these data correctly after convergence. While

JADA could align two domains nicely, which indicates the benefit

of conducting domain-wise and class-wise alignments jointly.

Misclassified Samples Analysis: To deeply explore the ad-

vantages of JADA over other baselines, Figure 5 shows randomly

selected misclassified samples of DANN and MCD for the task A

→W with respect to the classes “mobile phone” and “ruler”, since

DANN and MCD perform poorly on these two categories. Espe-

cially, MCD misclassifies all the target samples of class “mobile

phone”, which is consistent with the observation in t-SNE visual-

ization. By observing the training process of MCD, we find all the

target samples of class “mobile phone” are predicted wrongly by

two task-specific classifiers simultaneously from beginning. This

indicates that MCD heavily relies on the correctness of source clas-

sifiers. For DANN, it will misclassify the target samples that are

much similar to other classes in source domain, which means with-

out considering the discriminative structures, DANN will mix up

source and target samples. Therefore, the domain-wise alignment

and class-wise alignment are complementary to each other. By

capturing the global domain-wise knowledge and preserving the

discriminative information, JADA will achieve higher cross-domain

prediction accuracies.

Confusion matrices: We draw the confusion matrices in Fig-

ure 6 to intuitively illustrate the efficacy of our approach. For the

Source Only model, there are many wrong digit predictions. For

instance, most samples of class “8” are mistakenly predicted into “3”
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Figure 5: Misclassified samples analysis of DANN andMCD for task A→Wof Office-31 with respect to classes “mobile phone”

and “ruler”. Red and black represent the misclassified and correct samples.

Figure 6: (Best viewed in color.) Confusion matrices for visualization of the performance of Source Only, DANN, MCD and

JADA for task USPS→MNIST.

which reveals the tremendously large difference among domains.

DANN [10] and MCD [39] perform better, but in some cases it is

quite possible to be misclassified, particularly when testing similar

digits like “7” and “2”, “9” and “4”. By contrast, much more right

predictions appear in the diagonal using JADA, which proves both

the domain-wise and class-wise discrepancies could be effectively

mitigated by the proposed method.

Convergence Performance: The optimization of two minimax

games in JADA can be achieved simultaneously by optimizing

Eq. (8). This enables training JADA efficiently in an end-to-end

way by adding a gradient reversal layer as [10, 34]. To verify the

convergence performance of JADA, Figure 7 shows the test errors

of different methods for task A → W of Office-31. JADA converges

faster and performsmore stable than one-level minimax game based

methods.

5 CONCLUSION

In this paper, we propose a novel joint adversarial domain adap-

tation (JADA) approach for DA by simultaneously capturing the

global domain knowledge and exploiting category discriminative

structures. Unlike previous adversarial learning based DA methods,

JADA jointly minimizes the domain-wise and class-wise distribu-

tion discrepancies via an unified adversarial learning process and is

Figure 7: Convergence performance for task A→W.

more robust to large domain shift. JADA can be optimized in an ef-

ficient end-to-end training manner via back-propagation. Empirical

evidence demonstrates that JADA has superiority over state-of-the-

art methods on several standard cross-domain datasets.
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