678 research outputs found

    Esophageal Food Impaction: A Homemade Suction Tube Attached to Esophagogastroduodenoscopy for Food Bolus Removal

    Get PDF
    The most common esophageal foreign body in adults is impacted food bolus. Polypectomy snares, Dormia baskets, retrieval nets, rat-tooth forceps, alligator forceps or polyp graspers are usually used to remove it. Here, we report the case of a 78-year-old woman whose esophagogastroduodenoscopy (EGD) showed a firm goose liver impacted tightly in the lower esophagus; all of the above-mentioned retrieval instruments could not remove it. We used a homemade device by attaching a modified nasogastric tube to an EGD and successfully removed the goose liver by suction under endoscopic visualization. The method is very effective to remove firm and tightly impacted materials in a narrow lumen. When the usual retrieval instruments fail, a homemade suction tube attached to an EGD is an alternative

    Direct Determination of ECD in ECD Kit: A Solid Sample Quantitation Method for Active Pharmaceutical Ingredient in Drug Product

    Get PDF
    Technetium-99m ethyl cysteinate dimer (Tc-99m-ECD) is an essential imaging agent used in evaluating the regional cerebral blood flow in patients with cerebrovascular diseases. Determination of active pharmaceutical ingredient, that is, L-Cysteine, N, N′-1,2-ethanediylbis-, diethyl ester, dihydrochloride (ECD) in ECD Kit is a relevant requirement for the pharmaceutical quality control in processes of mass fabrication. We here presented a direct solid sample determination method of ECD in ECD Kit without sample dissolution to avoid the rapid degradation of ECD. An elemental analyzer equipped with a nondispersive infrared detector and a calibration curve of coal standard was used for the quantitation of sulfur in ECD Kit. No significant matrix effect was found. The peak area of coal standard against the amount of sulfur was linear over the range of 0.03–0.10 mg, with a correlation coefficient (r) of 0.9993. Method validation parameters were achieved to demonstrate the potential of this method

    Image operator learning coupled with CNN classification and its application to staff line removal

    Full text link
    Many image transformations can be modeled by image operators that are characterized by pixel-wise local functions defined on a finite support window. In image operator learning, these functions are estimated from training data using machine learning techniques. Input size is usually a critical issue when using learning algorithms, and it limits the size of practicable windows. We propose the use of convolutional neural networks (CNNs) to overcome this limitation. The problem of removing staff-lines in music score images is chosen to evaluate the effects of window and convolutional mask sizes on the learned image operator performance. Results show that the CNN based solution outperforms previous ones obtained using conventional learning algorithms or heuristic algorithms, indicating the potential of CNNs as base classifiers in image operator learning. The implementations will be made available on the TRIOSlib project site.Comment: To appear in ICDAR 201

    Control of Kaposi's Sarcoma-Associated Herpesvirus Reactivation Induced by Multiple Signals

    Get PDF
    The ability to control cellular functions can bring about many developments in basic biological research and its applications. The presence of multiple signals, internal as well as externally imposed, introduces several challenges for controlling cellular functions. Additionally the lack of clear understanding of the cellular signaling network limits our ability to infer the responses to a number of signals. This work investigates the control of Kaposi's sarcoma-associated herpesvirus reactivation upon treatment with a combination of multiple signals. We utilize mathematical model-based as well as experiment-based approaches to achieve the desired goals of maximizing virus reactivation. The results show that appropriately selected control signals can induce virus lytic gene expression about ten folds higher than a single drug; these results were validated by comparing the results of the two approaches, and experimentally using multiple assays. Additionally, we have quantitatively analyzed potential interactions between the used combinations of drugs. Some of these interactions were consistent with existing literature, and new interactions emerged and warrant further studies. The work presents a general method that can be used to quantitatively and systematically study multi-signal induced responses. It enables optimization of combinations to achieve desired responses. It also allows identifying critical nodes mediating the multi-signal induced responses. The concept and the approach used in this work will be directly applicable to other diseases such as AIDS and cancer

    Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system

    Get PDF
    Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis) causes a lethal systemic infection (salmonellosis) in swine. Live attenuated Salmonella Choleraesuis vaccines are effective in preventing the disease, and isolates of Salmonella Choleraesuis with mutations in the cAMP-receptor protein (CRP) gene (Salmonella Choleraesuis ∆crp) are the most widely used, although the basis of the attenuation remains unclear. The objective of this study was to determine if the attenuated phenotype of Salmonella Choleraesuis ∆crp was due to alterations in susceptibility to gastrointestinal factors such as pH and bile salts, ability to colonize or invade the intestine, or cytotoxicity for macrophages. Compared with the parental strain, the survival rate of Salmonella Choleraesuis ∆crp at low pH or in the presence of bile salts was higher, while the ability of the mutant to invade intestinal epithelia was significantly decreased. In examining the role of CRP on the secretory function of the Salmonella pathogenicity island 1 (SPI-1) encoded type III secretion system (T3SS), it was shown that Salmonella Choleraesuis ∆crp was unable to secrete the SPI-1 T3SS effector proteins, SopB and SipB, which play a role in Salmonella intestinal invasiveness and macrophage cytotoxicity, respectively. In addition, caspase-1 dependent cytotoxicity for macrophages was significantly reduced in Salmonella Choleraesuis ∆crp. Collectively, this study demonstrates that the CRP affects the secretory function of SPI-1 T3SS and the resulting ability to invade the host intestinal epithelium, which is a critical element in the pathogenesis of Salmonella Choleraesuis

    Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Oncidium </it>spp. produce commercially important orchid cut flowers. However, they are amenable to intergeneric and inter-specific crossing making phylogenetic identification very difficult. Molecular markers derived from the chloroplast genome can provide useful tools for phylogenetic resolution.</p> <p>Results</p> <p>The complete chloroplast genome of the economically important <it>Oncidium </it>variety <it>Onc</it>. Gower Ramsey (Accession no. GQ324949) was determined using a polymerase chain reaction (PCR) and Sanger based ABI sequencing. The length of the <it>Oncidium </it>chloroplast genome is 146,484 bp. Genome structure, gene order and orientation are similar to <it>Phalaenopsis</it>, but differ from typical Poaceae, other monocots for which there are several published chloroplast (cp) genome. The <it>Onc</it>. Gower Ramsey chloroplast-encoded <it>NADH dehydrogenase </it>(<it>ndh</it>) genes, except <it>ndhE</it>, lack apparent functions. Deletion and other types of mutations were also found in the <it>ndh </it>genes of 15 other economically important Oncidiinae varieties, except <it>ndhE </it>in some species. The positions of some species in the evolution and taxonomy of Oncidiinae are difficult to identify. To identify the relationships between the 15 Oncidiinae hybrids, eight regions of the <it>Onc</it>. Gower Ramsey chloroplast genome were amplified by PCR for phylogenetic analysis. A total of 7042 bp derived from the eight regions could identify the relationships at the species level, which were supported by high bootstrap values. One particular 1846 bp region, derived from two PCR products (<it>trnH</it><sup>GUG </sup>-<it>psbA </it>and <it>trnF</it><sup>GAA</sup>-<it>ndhJ</it>) was adequate for correct phylogenetic placement of 13 of the 15 varieties (with the exception of <it>Degarmoara </it>Flying High and <it>Odontoglossum </it>Violetta von Holm). Thus the chloroplast genome provides a useful molecular marker for species identifications.</p> <p>Conclusion</p> <p>In this report, we used <it>Phalaenopsis. aphrodite </it>as a prototype for primer design to complete the <it>Onc</it>. Gower Ramsey genome sequence. Gene annotation showed that most of the <it>ndh </it>genes inOncidiinae, with the exception of <it>ndhE</it>, are non-functional. This phenomenon was observed in all of the Oncidiinae species tested. The genes and chloroplast DNA regions that would be the most useful for phylogenetic analysis were determined to be the <it>trnH</it><sup>GUG</sup>-<it>psbA </it>and the <it>trnF</it><sup>GAA</sup>-<it>ndhJ </it>regions. We conclude that complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies in <it>Oncidium </it>with applications for breeding and variety identification.</p

    Investigation of a Potential Scintigraphic Tracer for Imaging Apoptosis: Radioiodinated Annexin V-Kunitz Protease Inhibitor Fusion Protein

    Get PDF
    Radiolabeled annexin V (ANV) has been widely used for imaging cell apoptosis. Recently, a novel ANV-Kunitz-type protease inhibitor fusion protein, ANV-6L15, was found to be a promising probe for improved apoptosis detection based on its higher affinity to phosphatidylserine (PS) compared to native ANV. The present paper investigates the feasibility of apoptosis detection using radioiodinated ANV-6L15. Native ANV and ANV-6L15 were labeled with iodine-123 and iodine-125 using Iodogen method. The binding between the radioiodinated proteins and erythrocyte ghosts or chemical-induced apoptotic cells was examined. ANV-6L15 can be radioiodinated with high yield (40%−60%) and excellent radiochemical purity (>95%). 123I-ANV-6L15 exhibited a higher binding ratio to erythrocyte ghosts and apoptotic cells compared to 123I-ANV. The biodistribution of 123I-ANV-6L15 in mice was also characterized. 123I-ANV-6L15 was rapidly cleared from the blood. High uptake in the liver and the kidneys may limit the evaluation of apoptosis in abdominal regions. Our data suggest that radiolabled ANV-6L15 may be a better scintigraphic tracer than native ANV for apoptosis detection
    corecore