26 research outputs found

    Protein function and inhibitor prediction by statistical learning approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Developing and validating predictive decision tree models from mining chemical structural fingerprints and high–throughput screening data in PubChem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in high-throughput screening (HTS) techniques and readily available compound libraries generated using combinatorial chemistry or derived from natural products enable the testing of millions of compounds in a matter of days. Due to the amount of information produced by HTS assays, it is a very challenging task to mine the HTS data for potential interest in drug development research. Computational approaches for the analysis of HTS results face great challenges due to the large quantity of information and significant amounts of erroneous data produced.</p> <p>Results</p> <p>In this study, Decision Trees (DT) based models were developed to discriminate compound bioactivities by using their chemical structure fingerprints provided in the PubChem system <url>http://pubchem.ncbi.nlm.nih.gov</url>. The DT models were examined for filtering biological activity data contained in four assays deposited in the PubChem Bioassay Database including assays tested for 5HT1a agonists, antagonists, and HIV-1 RT-RNase H inhibitors. The 10-fold Cross Validation (CV) sensitivity, specificity and Matthews Correlation Coefficient (MCC) for the models are 57.2~80.5%, 97.3~99.0%, 0.4~0.5 respectively. A further evaluation was also performed for DT models built for two independent bioassays, where inhibitors for the same HIV RNase target were screened using different compound libraries, this experiment yields enrichment factor of 4.4 and 9.7.</p> <p>Conclusion</p> <p>Our results suggest that the designed DT models can be used as a virtual screening technique as well as a complement to traditional approaches for hits selection.</p

    Increasing The Odds Of Hit Iidentification By Screening Against Receptor Homologs

    Get PDF
    Increasing the odds of hit identification in screening is of significance for drug discovery. The odds for finding a hit are closely related either to the diversity of libraries or to the availability of focused libraries. There are no truly diverse libraries and it is difficult to design focused libraries without sufficient information. Hence it is helpful to consider alternative approaches that can enhance the odds using existing libraries. Multiple members of a protein family have been considered collectively in inhibitor design, on the basis of the correlation between protein families and ligands derived from specific compound classes. Such a correlation has been exploited in various drug discovery studies and a general receptor-homolog-based screening scheme may be devised. The feasibility of such a scheme in enhancing the odds of hit identification is discussed.Singapore-MIT Alliance (SMA

    The Text-mining based PubChem Bioassay neighboring analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the number of High Throughput Screening (HTS) assays deposited in PubChem has grown quickly. As a result, the volume of both the structured information (i.e. molecular structure, bioactivities) and the unstructured information (such as descriptions of bioassay experiments), has been increasing exponentially. As a result, it has become even more demanding and challenging to efficiently assemble the bioactivity data by mining the huge amount of information to identify and interpret the relationships among the diversified bioassay experiments. In this work, we propose a text-mining based approach for bioassay neighboring analysis from the unstructured text descriptions contained in the PubChem BioAssay database.</p> <p>Results</p> <p>The neighboring analysis is achieved by evaluating the cosine scores of each bioassay pair and fraction of overlaps among the human-curated neighbors. Our results from the cosine score distribution analysis and assay neighbor clustering analysis on all PubChem bioassays suggest that strong correlations among the bioassays can be identified from their conceptual relevance. A comparison with other existing assay neighboring methods suggests that the text-mining based bioassay neighboring approach provides meaningful linkages among the PubChem bioassays, and complements the existing methods by identifying additional relationships among the bioassay entries.</p> <p>Conclusions</p> <p>The text-mining based bioassay neighboring analysis is efficient for correlating bioassays and studying different aspects of a biological process, which are otherwise difficult to achieve by existing neighboring procedures due to the lack of specific annotations and structured information. It is suggested that the text-mining based bioassay neighboring analysis can be used as a standalone or as a complementary tool for the PubChem bioassay neighboring process to enable efficient integration of assay results and generate hypotheses for the discovery of bioactivities of the tested reagents.</p

    Update of TTD: Therapeutic Target Database

    Get PDF
    Increasing numbers of proteins, nucleic acids and other molecular entities have been explored as therapeutic targets, hundreds of which are targets of approved and clinical trial drugs. Knowledge of these targets and corresponding drugs, particularly those in clinical uses and trials, is highly useful for facilitating drug discovery. Therapeutic Target Database (TTD) has been developed to provide information about therapeutic targets and corresponding drugs. In order to accommodate increasing demand for comprehensive knowledge about the primary targets of the approved, clinical trial and experimental drugs, numerous improvements and updates have been made to TTD. These updates include information about 348 successful, 292 clinical trial and 1254 research targets, 1514 approved, 1212 clinical trial and 2302 experimental drugs linked to their primary targets (3382 small molecule and 649 antisense drugs with available structure and sequence), new ways to access data by drug mode of action, recursive search of related targets or drugs, similarity target and drug searching, customized and whole data download, standardized target ID, and significant increase of data (1894 targets, 560 diseases and 5028 drugs compared with the 433 targets, 125 diseases and 809 drugs in the original release described in previous paper). This database can be accessed at http://bidd.nus.edu.sg/group/cjttd/TTD.asp

    PubChem3D: a new resource for scientists

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PubChem is an open repository for small molecules and their experimental biological activity. PubChem integrates and provides search, retrieval, visualization, analysis, and programmatic access tools in an effort to maximize the utility of contributed information. There are many diverse chemical structures with similar biological efficacies against targets available in PubChem that are difficult to interrelate using traditional 2-D similarity methods. A new layer called PubChem3D is added to PubChem to assist in this analysis.</p> <p>Description</p> <p>PubChem generates a 3-D conformer model description for 92.3% of all records in the PubChem Compound database (when considering the parent compound of salts). Each of these conformer models is sampled to remove redundancy, guaranteeing a minimum (non-hydrogen atom pair-wise) RMSD between conformers. A diverse conformer ordering gives a maximal description of the conformational diversity of a molecule when only a subset of available conformers is used. A pre-computed search per compound record gives immediate access to a set of 3-D similar compounds (called "Similar Conformers") in PubChem and their respective superpositions. Systematic augmentation of PubChem resources to include a 3-D layer provides users with new capabilities to search, subset, visualize, analyze, and download data.</p> <p>A series of retrospective studies help to demonstrate important connections between chemical structures and their biological function that are not obvious using 2-D similarity but are readily apparent by 3-D similarity.</p> <p>Conclusions</p> <p>The addition of PubChem3D to the existing contents of PubChem is a considerable achievement, given the scope, scale, and the fact that the resource is publicly accessible and free. With the ability to uncover latent structure-activity relationships of chemical structures, while complementing 2-D similarity analysis approaches, PubChem3D represents a new resource for scientists to exploit when exploring the biological annotations in PubChem.</p
    corecore