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SUMMARY 
 

A fundamental understanding of how biological systems work requires knowledge of 

the proteins and interactions of biomolecules. The role of proteins as well as small 

molecules participating in interactions can be interpreted as their functions. This is

becoming an increasingly important means for better understanding of biological 

process and for facilitating modern drug discoveries. This thesis presents the predicting

 of protein functional families and protein inhibitors by statistical machine learning

 approach. 

 

Development of methods and computational tools for the prediction of functional
 
families of protein is one of the main objectives of this study. Protein function 

classification systems were designed to assign functional families from proteins’ 

primary sequence irrespective of sequence similarity. In this work, a number of protein 

classification problems such as enzyme families, transporter families and RNA-binding 

proteins were studied and the classification models were further evaluated by using 

independent evaluation sets. The independent evaluation results showed a prediction 

accuracy above 70% for 53 out of 72 protein functional families in this study. 

 

In order to evaluate the capability of the prediction system for assigning functional 

class of proteins without any sequence similarity in protein sequence databases and 

proteins with similar sequence but different functions, novel proteins from bacterial, 

viral and plant species were selected and tested to examine to us what extent, their 

function can be predicted by using our prediction systems.  It was shown that the 
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accuracy for predicting their function is in an acceptable range of 67% ~ 85%, whereas 

other approaches solely based sequence similarity approach may not suitable for this 

task. These results suggest that an SVM-based prediction system is useful for 

facilitating the prediction of the function of novel proteins in the genomes of bacteria, 

virus, plants as well as other organisms and major functional groups, such as enzymes. 

 

Another aim of this work is to predict protein inhibitors by statistical learning approach 

in order to cope with an increasing need of the discovery of inhibitors of therapeutically 

important proteins, particularly those with crystal 3D structures available. These 

inhibitors can be used as potential leads for drug development. Prediction of 

HIV-protease inhibitors (PIs) is used as an example, as it is of relevance of drug 

discovery and there are substantial structures and inhibitors to develop a statistical 

machine learning system. In the current use of HIV-1 protease inhibitors for anti-HIV 

therapies, the main concerns are the rapid emergence of drug resistance and many 

physiological side effects. Thus it is in high demand for speeding up drug discovery in 

the fight against with HIV infections by properly choosing HIV PIs candidates. In this 

study, a set of 4291 inhibitors and 10000 non-inhibitors were selected to develop a 

SVM classifier, which gave a prediction accuracy of 97.05% for a random selection of 

independent evaluation set composed of 3424 compounds. This result suggests that the 

classification model is self-consistent and has certain capability in the selection of 

probable HIV-1 PI candidates. Recursive feature selection has been employed to select 

significant molecular descriptors and it was shown that molecular connectivity and 

shape, flexibility, and hydrogen bond interactions are among the most distinguishing 

features for discriminating HIV-1 protease inhibitors. The results of this study indicate 

that the statistical learning approach is useful for PIs prediction, the methods 
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implemented in this work can be extended to the other inhibitor/agonist/substrate 

prediction problems. 
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Chapter 1 Introduction 

1. Introduction 

Knowledge of proteins is essential in the understanding of biological processes such as 

gene regulation and disease pathology1, 2. The demand and possibility for probing 

protein function and interactions with other biomolecules have been increasing along 

with the progress of genomics and proteomics. Resulting from large-scale genome 

sequencing projects, the gap between the large amounts of sequences information and 

their function characterization is continuously increasing3, 4. Thus, the understanding of 

protein function is important for facilitating drug target search, drug discovery and 

systematically study of biological events. The availability of the flood of biological 

information brings us both the chance and the challenge to probe the knowledge of the 

biomolecules interactions, proteins function and biological process, which not only 

helps us to understand and interpret the biological events in the molecular level but also 

enables us to study regions which are not accessible experimentally or which would 

imply very expensive experiments. Prediction of protein functions and protein 

inhibitors (normally protein inhibitors are referring to molecules that can inhibit the 

protein functions ) are two challenges in biology and drug discovery,  that  are 

investigated by a statistical learning method – Support Vector Machines in this thesis.  

1.1. Introduction to protein function prediction 

Increasing effort has been directed for predicting protein functions from their sequence. 

Various methods have been used for protein function prediction from their sequence, 

such as sequence similarity searching5-7, evolutionary analysis8, 9, structure-based 

approach10, protein/gene fusion11, 12, protein interaction13, 14 and family classification 

by sequence clustering15, 16.  
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Methods based on sequence similarity, such as FASTA17, BLAST18, Motifs19 and 

Prosite20, have frequently been used for protein function prediction. However, with 

decreasing in sequence similarities, the criteria for comparison of distantly-related 

proteins become increasingly difficult to formulate 16. Moreover, not all homologous 

proteins have similar functions 8.  Even a shared domain within a group of proteins 

does not necessarily imply that these proteins have the same function21. These 

problems often hinder some of the sequence similarity based methods 15.  

Unlike sequence similarity based approach, structure-based methods can determine 

protein function from the structure function relationship without solely relying on 

sequence similarities. Although the structure information may provide insights into 

protein function22, a hypothetical function obtained by identifying the similar 3D folds 

in the absence of clear sequence identity does not reflect the real function with high 

confidence23-26. Structure-based approaches are not limited in finding clues between 

function and similar 3D folds. Several other approaches, such as structure descriptors27, 

patterns in non-homologous tertiary structures28 and geometric hashing29, have been 

successfully implemented by using 3D templates known to be associated with functions 

to scan new structures against the profile library. However, the limited ability to locate 

3D profiles automatically and the restriction of sequence variation of 3D templates 

methods30 are the practical drawbacks of these methods.  

Apart from the methods for determining specific protein function on the basis of 

similarities either in structure or in sequence, another approach to predict protein 

function is to classify proteins into their functional families on the basis of their 

sequences, which is expected to be particularly useful in the cases described above. To 

fulfill the task of protein functional families classification for facilitating protein 

function prediction, artificial intelligence statistical learning methods, such as support 
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vector machine (SVM)31-33 and neural network34, have been reported. The strategy 

normally used is that samples of proteins in a functional family and those outside the 

family are used to train a system for protein classification. And the preliminary 

results31-34 suggest that Support Vector Machine  can be trained and used to recognize 

proteins with characteristics for a particular function if there are sufficient samples of 

proteins with specific function. 

In summary, there are three principal strategies, sequence similarity based, structure 

based and statistical learning based methods relying on sequence or structures, to 

estimate function of a protein by using bioinformatics approaches. 

 

1.1.1. Sequence similarity based approaches 

As introduced in the previous section, various approaches have been implemented for 

facilitating the protein function assignment for the primary sequence, such as sequence 

alignment, clustering and pattern identification, remote homology searching, statistical 

methods and artificial intelligence. The most prominent and commonly used one 

among them is sequence alignment method. Based on sequence-structure-function 

relationship, proteins with high similarity in sequence are more likely to have the 

similarity in structure and function.  This method normally starts by aligning the 

sequences of proteins with unknown function and proteins with known function 

together with a certain level of sequence similarities. By determining the level of 

sequence similarity, one can predict the potential functions.  

As early in 1970, Needleman-Wunsch algorithm was proposed by Saul Needleman and 

Christian Wunsch35 for solving the global pairwise sequence alignment problem where 

all the characters in both sequences participate in the alignment. Another famous 
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algorithm, Smith-Waterman algorithm was first proposed by Temple Smith and 

Michael Waterman in 198136 for performing local sequence alignment to find related 

regions within sequences. 

Pairwise sequence alignment methods are concerned with finding the best-matching 

piecewise local or global alignments of protein (DNA) sequences, however, it could be 

time consuming to perform a large sequence database scan in order to identify the 

sequences homologous.  

In order to cope with the task of large-scale sequence database searching, FASTA17 was 

proposed by David J. Lipman and William R. Pearson in 1985, which was latter 

superseded by BLAST18 proposed by Stephen Altschul etc in 1990. BLAST became the 

most widely used bioinformatics programs because it addresse a fundamental problem 

and the algorithm emphasizes the balance between the speed and sensitivity. It is an 

important fact that biomolecules could share the similar structures and functions even if 

their sequences have low level of similarity or if they are dissimilar.  In order to find 

distant relatives of a protein and identify weak but biologically relevant similarities,  

PSI-BLAST37 has been introduced by Altschul and Koonin in 1998. It iteratively 

searches protein databases for sequences similar to one or more protein query 

sequences. PSI-BLAST is similar to BLAST except that it uses position-specific scoring 

matrices derived during the search. In addition to the usual PSI-blast criteria for 

matching, Pattern-Hit Initiated BLAST38 (PHI-BLAST) is introduced to enforce the 

presence of a pattern in database searching for protein sequences that also contain the 

input pattern and have significant similarity to the query sequence near the pattern 

occurrences. 

In many cases, a protein can perform certain functional activity if it contains a 

conserved sequence20, thus motif based methods, such as Motifs19 , Prosite20 and 

4 
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Sequence Clustering15 that have been developed in recent years, also show certain 

capability of identifying proteins with weak similarities by using patterns, rules and 

profiles search.  

However, identification of protein functions solely based on the sequence similarities is 

impractical for proteins without any homology in sequence16. In addition, proteins with 

similar sequences may not have similar functions8. Although the motif/pattern based 

methods could cluster proteins by identifying shared domains within a functional group, 

it does not necessarily imply that clustered proteins have the same function21.  

1.1.2. Structure based approaches 

Unlike sequence-based approaches, structure–based approaches rely on the analysis of 

the protein 2D/3D structures. Based on assumption that proteins with similar structure 

have similar functions, one can predict the protein function or get clues on protein 

function from its structure. 

Based on the knowledge of structure-function relationship, one can infer function from 

the corresponding protein structure22. Homology modeling approaches27-29, 39 have 

been successfully implemented by using 3D templates known to be associated with 

functions to scan new structures against the profile library. However, the restriction of 

sequence variation in the templates30 is the main limitation. 

By studying the relationships between protein fold and functions, one is able to analyze 

the protein functions from the shared protein folds40. However, there are two concerns. 

Firstly, function identification that solely relies on the homologous fold identification 

without considering sequence similarity is of low confidence23-26. Secondly, the 

relationship between the 3D folds and protein function is usually very complex, and 

even ambiguous in many cases41.  
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The gap between the amount of protein sequences and solved protein structures is 

increasing rapidly. Although a combination of techniques such as comparative protein 

modeling and experimental protein structure determination techniques42 are widely 

used to determine protein structures, only about 15% of sequenced protein have 3D 

structures. The lack of solved structures limits the application of structure-based 

methods for predicting protein functions. 

1.1.3. Statistical learning based approach 

The sequence similarity based approaches and structure based approaches require 

certain similarities in their sequences or their structures. Thus it is necessary to look for 

alternative approaches to predict the protein function without considering similarities 

in either structures or sequences. Statistical learning based approach is one potential 

solution to address this problem. 

Various statistical learning approaches have been developed to explore protein 

functions from its primary sequence by using statistical learning methods including 

discretized naïve Bayes, C4.5 decision trees, and instance-based leaning33, neural 

networks34 and support vector machines (SVM)31-33, 43-46. These methods rely on the 

model generated by training the protein examples from a specific functional class and 

negative examples outside the functional class. The features representing the protein 

sequence information have been obtained by several methods such as binary coding, 

amino acid composition, hydrophobicity, normalized Van der Waals volume, polarity, 

polarizability or their combinations14, 31, 43, 47-49. Some of these methods, use sequence 

derived features without considering sequence similarities, are capable of facilitating 

protein function prediction without considering sequence similarities. 

The statistical learning approaches require certain number of representative examples 
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for learning. Thus the effective data collection and negative examples selection are very 

important to obtain pre-classified functional protein examples and representative 

negative examples. However, the problem of effective examples remains unsolved. 

 

1.2. Introduction to protein inhibitor prediction 

Many drugs target on enzymatic proteins and act as competitive inhibitor of the 

enzymes, are commonly referred to as inhibitors50. Interactions between inhibitors and 

proteins such as enzymes and carrier proteins can be either reversible or irreversible. 

One of the common roles for inhibitors’ activity is to hinder its target protein’s normal 

reaction or to regulate the function of its target. For example, the cyclo-oxygenase 

inhibition by aspirin that irreversible acetylates a serine residue at the top of the main 

cytoclooxygenase site51; HIV-1 protease inhibition by indinavir, which block its 

peptide binding, site to prevent the binding of its peptide51. While not all inhibitors can 

be used as valid drugs due to the unwanted effects and poor pharmacokinetic properties, 

prediction of protein inhibitors is important for finding drug leads, probing protein 

inhibition mechanisms and designing better drugs and for protein enginering. Intensive 

efforts on designing inhibitors have lead to the advent of computer aided drug 

design52-55, that aims to help the rapid and efficient discovery of drug leads.  

 

Many existing computational approaches focused on the improvement of interaction 

between target proteins and their inhibitors. One approach studies the relationship 

between protein and its inhibitors to simulate the interactions and binding activities of 

protein-substrate system by finding if there is a stable energy minimum by 

protein-ligand docking approach56, which requires 3D structures of both proteins and 
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substrates.  Other methods widely used to speed up the inhibitors identification in the 

early stage of drug discovery are statistical learning methods57-60 and Quantitative 

Structure Activity Relationship(QSAR)61-64 study. These approaches can be used to 

speed up the drug development circle by eliminating false drug leads in earlier stage. 

Various approaches have their requirements for achieving the study objective. Thus, it 

is necessary to have a close look on these approaches for facilitating protein inhibitor 

research. 

1.2.1. Quantitative Structure Activity Relationship (QSAR) 

It has been a century since Crum-Brown and Fraser proposed the idea that the 

physiological action of a substance is a function of its chemical composition and 

constitution17 and about 40 years since the quantitative structure-activity relationship 

(QSAR) paradigm was practically used in chemistry and pharmacology65.  

Quantitative Structure Activity Relationship (QSAR) stands for the quantitative study 

of relationships between molecules’ physical-chemical properties and their biological 

activities. In other words, QSAR is to study molecule behaviors in a biological event. 

QSAR can be used to identify chemical structures that have good inhibitory effects on 

specific protein target. Optimal molecular properties are considered to develop the 

relationship between a list of compounds structure and their quantitative activities. And 

this relationship can be used to predict quantitative activities of new compounds from 

their structures. Unlike the docking and other molecular modeling approaches, the 3D 

structure of the protein target is not required. 

QSAR process provids the usefully clues of which descriptors are important for the 

biological response. For example, the LogP is an important measure used in identifying 

"drug-likeness" according to Lipinski's Rule of Five66, the LogP of 2.77-3.76 was 
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found to be ideal for LOX inhibitors67; a logP value of 2.92 or higher, 18-atom-long or 

longer molecular length and a high Ehomo value etc are required for an effective p- 

glycoprotein inhibitor68; other important measures like chi (first-order Randic 

connectivity index) is for identification of carbonic anhydrase inhibitors69. The 

proposed important descriptor during the QSAR analysis can be used as a rule for 

virtual screening the new inhibitors that are likely to produce the desired activities.  

Normally the development of QSAR model is based on a group of compounds with 

certain common structure, the diversity of the studied compounds is not enough for 

predicting novel inhibitors without the common structure. Thus, the use of QSAR for 

novel inhibitors design might not adequate as it requires a large number of compounds 

with experimental activity data to develop many QSAR models. 

1.2.2. Molecular Docking Approach 

Molecular docking is a widely used technique for screening and rapid testing of large 

amount of compounds to identify new binders of a selected protein target56. The 

identified new binders are candidates of new drug leads. It is an advance for docking 

brought by the development of empirical force fields. The automated docking 

techniques allow de novo drug design with the capacity of allowing assessment of 

relative binding strength and drug specificity70.  

This approach has been used widely in probing new inhibitor candidates. DesJarlais 

71suggested that the Targeted-DOCK can be used for the design of a novel non-peptide 

inhibitor of HIV-1 protease. Benzylamino acetylcholinesterase inhibitor-like 

compound screening is another successful application of docking approach by 

Yamamoto72. Other studies of protein inhibitors, such as human rhinovirus-14 

inhibitors73, glucoamylase inhibitors74, thrombin inhibitors 75, 76 etc, especially the 
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study of HIV protease inhibitors70, 71, 77-79 which attracts a lot of interests,   show that 

docking approach can be used for inhibitor screening.  

However, the use of molecular docking approach requires 3D structure of the target 

proteins, which is essential for calculating the binding affinity from molecular 

mechanics/modeling. Because there are only limited number of proteins with 3D 

structures available, the molecular docking approach is not applicable in many other 

cases. Moreover, molecular docking normally prefers the conformation of the binding 

site of the protein target is rigid other than flexible, thus the flexibility of the protein 

structure can affect the screening accuracy.  

1.2.3. Statistical learning approaches for protein inhibitor prediction 

Statistical leaning methods have been applied in QSAR studies for facilitating 

inhibitors identification as the implementation of relationship analytical mothods80-83. 

On the other hand, the direct use of statistical learning methods for this purpose mainly 

focused on classification, such as distinguishing between inhibitors and non-inhibitors, 

or regression analysis between the molecular structure and the measurement of 

inhibition57-60. One of the advantages is that the direct use of statistical learning 

methods do not require the 3D structure of protein target, thus these methods are 

potentially applicable to the case that the target structure is unknown or very flexible. 

Another advantage of statistical learning methods for protein inhibitor prediction is the 

diversity in training samples, which allows us to predict diversified compounds.  

Douali et al 80 approach the prediction of anti-HIV activity of HEPT by use of neural 

networks. Daszykowski et al 57 analysis of biological activity of Non-Nucleoside 

Reverse Transcriptase Inhibitors (NNRTIs) by using tree based approach - 

Classification And Regression Trees. Mager82 overview the work for using the neural 

10 



Chapter 1 Introduction 

approach to optimize the desired actions and to lower the side effects of non-nucleoside 

HIV-1 reverse transcriptase inhibitors. 

However, a well-trained statistical learning model requires more inhibitor samples that 

QSAR approach to construct the decision function. Moreover, the proper selection of 

non-inhibitors is also very important because the decision function of statistical 

learning methods is usually determined by both positive and negative samples. 

Unfortunately, this problem remains unsolved because the compounds are enormous in 

numbers and they are very diverse. In work, we are going to approach this problem as 

well as other important issues such as data unbalance problem, predominant feature 

selections. 

One of the well-known examples in the field of rational drug design is the discovery 

and development of drugs for the treatment of AIDS84. The major targets for the 

development of new chemotherapeutic agents are Protease, Intergrease, and Reverse 

Transcriptase. Protease inhibitors are known as effective antiviral agents in increasing 

the effectiveness of antiretroviral therapy and prolonging the survival of patients with 

HIV infection/AIDS. Thus, development of new HIV PIs is also in high demand for 

anti-HIV therapy. However, due to the poor pharmacokinetic properties and side 

effects, the discovery of novel PIs is a difficult task. In this study, the prediction of HIV 

PIs is taken as an example to illustrate our approach for protein inhibitors predictions. 
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1.3. Introduction to HIV protease inhibitors prediction 

As of December 2004, an estimated 39.4 million ~ 37.2 million adults and 2.2 million 

children younger than 15 years – are infected with Human Immunodeficiency Virus 

(HIV) or living with AIDS. The rate of increase of the new infection is alarming. An 

estimation of 4.9 million new HIV infections occurred worldwide during 2004, 

amounting to about 14,000 infections each day85. In view of the huge worldwide impact 

of AIDS and the spreading speed of the AIDS pandemic, there have been intense global 

efforts towards understanding the biology and life cycle of HIV-1 and the host response 

to HIV-1 infection. These advances have led to the development of several new drugs 

that target the viral life cycle which are effective against HIV-1.  

Currently, there are 20 approved antiretroviral agents for anti-HIV-1 clinical therapy86, 

and each of those drugs could target one of the two viral enzymes protease or reverse 

transcriptase. Although the cocktail method87 is introduced, the success of treatment is 

still limited due to the HIV-1 target drug resistant mutations88, 89 which is the main 

cause of anti-HIV drug failure. Besides the drug resistant mutations that occurred in 

long term therapy, protease inhibitors are known as effective antiviral agents to 

increase the effectiveness in antiretroviral therapy and to prolong the survival of 

patients with HIV infection/AIDS. Efforts have been directed to development of new 

HIV protease inhibitors that could be potentially used for anti-HIV therapy. 

Development of new HIV PIs is also in high demand for anti-HIV therapy because the 

appearance of drug-resistant mutants and even multi-drug-resistance mutants is the 

main cause of the drug failure. Thus, it is time to have a clear look on HIV protease and 

its inhibitors. 
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1.3.1. HIV protease and protease inhibitors 

The HIV-1 protease is responsible for the maturation of new infectious HIV particles. It 

cleaves the Gag protein to yield the functional core proteins, i.e. the capsid protein, 

matrix protein, and nucleocapsid protein. It also synthesizes the polymerase protein 

(Pol) of HIV-1 as a Gag-pol (Pr160Gag-Pol) fusion polyprotein90, 91.  

HIV-1 PI inhibits the protease from properly cleaving Gag-pol polyprotein into its 

smaller functional units. The currently available HIV-1 protease inhibitors (PIs) can be 

classified into two broad classes85, 86: 1) Peptide-based inhibitors, which can be 

subdivided into peptides, peptidomimetics and symmetry-based inhibitors; and 2) 

non-peptide based inhibitors.  

Peptides are short amino acid polymers in which the individual amino acid residues are 

linked by amide bonds (CO-NH). In this study, amino acids, amines and amides are 

categorized under peptides. Amines are compounds containing one or more 

substituents that are organic bonded to a nitrogen atom, i.e. RNH2, R2NH or R3N. 

Examples of amines among the positive samples are aminoglycosides, benzimidazole, 

indoles, pyrroles and decahydroisoquinolines. Amides are compounds containing 

–CONR2 functional groups, such as carboxyamides and sulfonamides92. 

Peptidomimetics are protease substrate analogues that have a non-hydrolysable amino 

acid at the scissile bond. They have been designed to mimic the tetrahedral 

transition-state intermediate formed during the HIV-1 PR catalysis event. The 

transition state of the aspartic proteinase-catalyzed reaction occurs with the addition of 

a water molecule, coordinated by the active site of aspartates, to the peptide bond. 

These substrate-based inhibitors have many chemical forms, but they assume similar 

conformations in the substrate-binding cleft of the protease93. Examples of 

peptidomimetic drugs approved by FDA, are Saquinavir (Ro 31-8959) and Indinavir 
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(L-735, 524).  

C2 symmetry and pseudo-symmetry drugs are also peptide-based, they have less 

peptidic nature and they exploit protease-specific symmetry of the active site. Although 

symmetry is not thought to be an absolute requirement for the design of HIV PIs, these 

drugs were designed as an improvement of peptidic drugs with the expectation that the 

less peptidic nature of inhibitors might enhance stability. An example of 

symmetry-based drug is Ritonavir (ABT-538). 

Non-peptidic inhibitors are inhibitors with moieties to displace water molecules in the 

active site cleft. Specifically, the binding features of the surrounded water are 

incorporated into the inhibitor. These classes of compounds have proved to be quite 

promising, and their discovery has provided a new starting point for designing of 

HIV-1 PR inhibitors. However, no inhibitor from this group is in clinical use yet.  

The United States Food and Drug Administration (FDA) has approved nine protease 

inhibitors for marketing in the United States since the release of Saquinavir in 1995. As 

a part of the Highly Active Antiretroviral Therapy (HAART), all of the HIV-PIs are 

used in combination with other antiretroviral agents for the treatment of HIV-1 

infection. 

1.3.2. Current problems with the use of HIV-1 PIs 

While existing HIV-1 PIs show promising results in antiretroviral therapy and 

prolonging the survival of patients with HIV infection/AIDS, most patients taking 

protease inhibitors alone show an increase in plasma viral RNA to near baseline levels 

by the end of the year of drug administration94 and the occurrence of PI-resistance HIV. 

It has been discovered that there are two major problems related to the use of HIV-1 PIs, 

drug resistance and side effects due to drug toxicity.  
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Resistance mutations in the protease gene may result from amino acid substitutions at 

or near the active site. This interferes with inhibitor binding because of conformational 

perturbations and the properties change around the active binding site. Substitution of 

amino acids lying outside the active region compensates for the deleterious effects of 

primary mutations95, 96.  

Resistance to PIs can emerge rapidly when these inhibitors are administered at 

inadequate doses or as part of suboptimal regimens97. The interpretation of protease 

mutants is further complicated by the extensive polymorphisms found in the protease 

gene of HIV-1 isolates from untreated patients. In one study, variation was noted in 

nearly 48% of protease codons compared with the consensus (wild-type) sequence98. 

The significance of these polymorphisms in determining treatment outcome remains 

uncertain, since most studies have not found any correlation between the presence of 

these polymorphisms and virologic response, or the rate at which PI resistance 

emerges.  

One other shortcoming of the present treatment involving protease inhibitors is the 

adverse effects, drug interactions, and other risks associated with their use. Generally, 

all protease inhibitors may cause hyperglycemia, diabetes mellitus and redistribution or 

accumulation of body fat and may increase the risk of bleeding in patients with 

hemophilia. They are also the causes of gastrointestinal adverse events such as nausea 

and diarrhea. 

Other adverse reactions occur less commonly, and some are primarily associated with 

the use of a particular protease inhibitor. The widely used HIV-PI Saquinavir was 

found to be the most toxic in majority of cell types99. Atazanavir causes asymptomatic 

hyperbilirubinemia, which may be accompanied by jaundice in many patients, although 

it is reversible upon discontinuation of treatment. The use of Ritonavir and 
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Lopinavir/Ritonavir has been associated with large increases in total cholesterol and 

triglyceride concentrations, and in some cases, pancreatitis. Some patients treated with 

Amprenavir have experienced severe and life-threatening skin reactions, including 

Stevens-Johnson syndrome. Thus the development of new effective PIs for 

antiretroviral therapy with less toxicity and improved enzyme-inhibitor interaction is in 

high demand. 

 

1.4. Introduction to Statistical learning methods 

The key concepts of the learning methods are data and hypotheses100. As such, 

statistical learning methods are capable of learning from the evidence and predicting 

the new observations. The mathematical analysis of the learning process began when 

the first learning machine, Perceptron, was suggested by F.Rosenblatt in 1960s101. The 

Perceptron addressed the pattern reorganization problem by generalizing rules from 

given examples for recognizing their specific patterns. The Perceptron was soon widely 

known as it brought a general model of learning phenomenon. Over the past 50 years, a 

number of machine learning methods have been introduced for solving real-life 

problems, for examples, Decision Trees, Hidden Markov Model, Neural Networks and 

Support Vector Machines.  

From the conceptual point of view, statistical learning methods are carried out in two 

flavors: supervised learning and unsupervised learning.  During supervised learning, 

the observations are divided into two groups: explanatory part and one (or more) 

dependent part that was treated as the consequence of the explanatory part. The purpose 

of the learning process is to specify a relationship between the explanatory part and the 

dependent part. The application of supervised learning requires a sufficiently large 
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number of data. Approaches under this category such as K-Nearest neighbor, Linear 

Learning Machines, Support Vector Machines, Probalistic Neural Networks, etc. were 

widely applied in the field of pattern reorganization.    During unsupervised learning, 

all data under investigation are allowed to speak for themselves and they are treated 

evenly. They are forming naturally without any interference, i.e. the unsupervised 

learning methods do not happen to have advanced indication of correct or incorrect 

answers; instead, they adjust through direct confrontation with new experiences. This 

learning process is called self-organization. Many machine learning methods, such as 

Self Organization Map, clustering methods including both hierarchal clustering and 

partitional clustering, are implemented in the unsupervised manner. 

Many statistical learning algorithms have been successfully applied in the pattern 

reorganization problems such as text reorganization and protein function classifications. 

In the following several sections, we will focus on some of the machines learning 

algorithms that have been employed in solving biological problems. 

1.4.1. K- Nearest Neighbor 

Learning from the observations is the centre of machine leaning system. KNN is an 

intuitional approach to demonstrate such learning process. An important feature of 

KNN is instance orientation. The decision procedure of KNN is very simple and 

intuitional by assuming that observations that are close together will share the same 

domain. The learned observations are pre-labeled while the new observation will be 

evaluated based on a similarity measure. The conclusions are based on the rule of 

“majority wins” voted by the K nearest neighbors closest to the new observation, 

whereas the remaining pre-labeled observations will not be considered for making 

decisions. The K, number of nearest neighbors, is a manageable variable optimized 

during the model training.  Practically, K should be smaller with respect to the number 
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of observations in order to make the data points close enough to produce an accurate 

estimate of the new observations. On the other hand, the K should be large enough to 

minimize the misclassification error due to biased examples involved in 

decision-making process. 

Various forms of K-nearest neighbor methods have been applied widely in dealing with 

biological information. Because of its conceptual simplicity and good performance in 

particular problems, it has become a basic method for solving information centric 

problems such as pattern reorganization problems in bioinformatics. Moreover, it is 

usually selected as a benchmark tool for comparison.  

The problem setup of KNN in the analysis of biology data is mostly for pattern 

recognitions, such as the detection of ventricular arrhythmia102, the study of 

Quantitative Structure-Activity Relationship(QSAR)62, 103-106,  the classification of 

protein families based on certain characteristics such as protein function107 and protein 

allergenicities108.   

The similarity measure used in KNN could be a drawback, because it treats all features 

equally based on computational similarities of distances. Since the nature of KNN is 

that only K nearest neighbors is considered for decision-making, this probably can lead 

to poor classification accuracy.  

1.4.2. Clustering Methods 

No matter how the learning problem is complicated, the information that the machine 

are learning could be enormous. Clustering method is one of the statistical learning 

approaches to reduce the amount of data by categorizing or grouping similar data items 

together.  

Clustering methods109-115 come in two basic types: hierarchical and partitional 
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clustering. There exist a wealth of subtypes and different algorithms across a wide 

variety of communities for these two basic types of clustering methods.  

Hierarchical clustering is implemented either by merging small clusters into larger ones, 

or by splitting large clusters into small ones. The clustering methods differ in the 

strategies on deciding which two small clusters should be merged together or which 

large cluster should be further divided. The end of the clustering procedure is a tree of 

clusters, which is also called a dendrogram. The obtained clusters are related together 

by sharing the root, which is like a tree with many branches and leafs. By cutting the 

dendrogram at a desired level, one can obtain a clustering of the data items into disjoint 

groups. Partitional clustering, on the other hand, attempts to decompose the data set 

into a set of disjoint clusters. The clustering algorithm tries to minimize the objective 

function by assigning clusters to the peaks in the probability density function. One of 

the partitional clustering algorithms is K-means clustering which is minimizing 

dissimilarity in the samples within each cluster and meanwhile maximizing the 

dissimilarity between clusters. 

Many biological problems require the information categorizing to extract hints or clues 

for interpreting biological phenomenon. Such as the study of genotypic and phenotypic 

relationships116, 117, Clustering receptors118, 119, disease feature clustering116, 120 etc. 

Although it is useful to abstract the flood of biological information for extracting easy 

understandable rules, it should be used with caution when the problem domain is very 

complex. The knowledge exploration of clustering approach requires little or no prior 

knowledge and start from the understanding of the whole data set, which makes the 

clusters very difficult to maintain. Grouped clusters based on the distance similarity can 

be easily affected by the input data with poor similarity measure.  
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1.4.3. Decision Trees 

The Decision Tree is a popular machine learning algorithms in the application of data 

mining and pattern reorganization. Compared with many other machine learning 

approaches, such as neural networks, support vector machines and instance centric 

methods, Decision Tree is simple to construct efficient in decision making. It can 

produce human readable and interpretable rules. These rules provide an insight into the 

problem domains. 

Decision Trees generate a series of rules from the input examples and then apply these 

rules to new examples for prediction. These rules are linked together and are shaped in 

a tree structure. The working flow starts from the topmost node and every decision of 

the node determines the direction of next node movement until the end of the tree 

branch node is reached. Therefore, the topmost node is the root of the decision tree, the 

variable playing this role is evaluated first as everything should start from the root of 

the tree. The variable on the root of the decision tree is one of the highest information 

gains. That is where the constriction of Decision tree starts form. Branches nodes of 

Decision trees can be calculated in the same way as a recursive procedure.  Many 

elegant algorithms for building decision trees with the desirable quality have been 

introduced and applied in many real life problems, for example, C4.5121(derived from 

ID3),CART122, CHAID123 are well known programs for decision trees construction. 

Decision Tree has been demonstrated useful for common medical clinical problems 

where uncertainties are unlikely124-128.  The logic flow of constructed Decision Trees 

can be an aid for the physician choosing a clinical strategy that offers the patient with 

the greatest expected value124, 129. Various application of Decision Trees in medical 

applications126-128, 130, 131 are shown. The wise designed tree logic with wise 

administrative and flexibly understanding of the decision could benefit both economy 
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and patients. Decision tree also has been applied in some biological information 

analysis problems, such as motif identification approach to explain T cell responses132, 

leiomyomatous tumors characterizations133,  exons and introns identification in DNA 

sequences134.  

The construction of the decision trees usually requires large number of samples to 

produce a meaningful classifier in biological problems. Additionally, Decision trees 

may not perform well than other methods when the problem is complex. Because it is 

difficult or even impossible find enough samples to describe the problem, the rules 

generated by Decision trees may be biased or even misleading 125.  

1.4.4. Neural Networks 

It has been a long time we understand about how the human brain working differ from 

the traditional data analysis methods either in performance or in learning process. From 

the basic conceptual point of view, mathematical methods designed to mimic the way 

of information processing and the knowledge acquisition in human brain are neural 

networks. As its name indicated, neural networks consist of group of neurons that are 

linked together into a network. Increasing efforts were directed to the study of the 

learning problem by various neural networks since the so-called back propagation 

method was proposed to simultaneously compute the weight coefficient of neurons 

within the networks135, 136 in 1986. The use of neural networks is still a hot research area 

in current machine learning research, such as pattern reorganization, association, and 

transformation to modeling in process control or expert system. 

A neural network trains a hidden-layer-containing network and uses the output of this 

layer to recognize patterns from the input feature vectors 137, 138, where each vector 

representing the various data of an observation. A classifier for NN is , ∑=
j

jj hwgy 0
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where j0  is the output weight of a hidden node j  to an output node; w g  is the 

output function; jh  is the value of a hidden layer n do e: ∑ += jjjij wxw(δ , jiw  is 
j

h

the input weight from an input node i to a hidden node j, wj is the threshold weight from 

an input node of value 1 to a hidden node j, and δ  

on in m

is a sigmoid function. The learning 

process is to optimize the weight vectors of all the neurons. The knowledge is gained 

from the learning and acquired by these weight vectors. Therefore, the optimized 

network that could act as a classifier can be used for determining whether or not a new 

input data of an observation response to a specific pattern. 

The most widely used transfer active functi any neural network applications is 

the sigmoid function, ( ) xe
xf

−+
=

1
1 .  Other alternative activation f e 

Gaussian have also been used widely in neural networks, e.g. probabilistic neural 

networks . Although the underlying principle of every kind of neural networks start 

from the human neurons simulation, different approaches may have different 

performance for different problems. In the study of anesthesia, intensive care, and 

emergency medicine by neural network, it has been shown that “complex, non-linear, 

and time depending relationships can be modeled and forecasted” . The encouraging 

results obtained in drug lead discovery and development also demonstrate it as a robust 

tool . The successfully implementation of NN approaches bioinformatics problem 

have been demonstrated in protein structure prediction 14 , protein f

protein-protein interaction prediciton 150.  

Unfortunately, there are still several concerns  138 for using neural networks to solve 

our problems. Firstly, it requires a great deal of computational effort to minimize 

overfitting. Secondly, the individual relations between the input variables and the 

unctions lik

139

140

141

142- 7

148-

unction and 

137,
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output variables are not developed without analytical basis so that the model tends to be 

a black box. Thirdly, neural networks have a number of weight parameters that are 

consequently increasing the computation costs for model training.  

the 

1.4.5. Support Vector Machines 

The basis of Support Vector Machine (SVM) learning theory had been brought forth by 

Vapnik151 in 1979. It receives increasing attention since it was officially introduced by 

Vapnik152 in 1995 and further explained by Dr. Burges153 in 1998. Because of the 

successful fundamental construction of the theory and the prominent learning power, 

much more efforts have been directed into both the study of its theoretical aspects and 

the potential of its applications. SVM has been applied to a wide range of problems 

including text categorization154-156, hand-written digit recognition152, tone 

recognition157, image classification and object detection158-161; flood stage 

forecasting162; cancer diagnosis163-165, microarray gene expression data analysis166, 

inhibitor classification167, prediction of protein solvent accessibility48, protein fold 

recognition47, protein secondary structure prediction49, prediction of protein-protein 

interaction14 and protein functional class classification31, 43, 45. These studies have 

demonstrated that SVM is consistently superior to other supervised learning methods 

including classification methods43, 166, 167. Thus in this study, we selected SVM as 

main statistical learning approach for predicting protein functions and inhibitors.  

SVM is based on the structural risk minimization (SRM) principle from statistical 

learning theory152. In linearly separable cases, SVM constructs a hyperplane that 

separates two different classes of vectors with a maximum margin. Examples are tested 

by placing them onto this input space to recognize the classification label based on their 

relative positions to the hyperplane. As real world problems are most likely in 

non-linear forms, SVM can be extended by introducing kernel mappings that are able to 

23 



Chapter 1 Introduction 

project the samples from non-separable space onto a high-dimensional feature space in 

which the training examples can be linearly separated. The optimal separation 

hyperplane obtained in this high-dimensional feature space corresponds to the 

nonlinear decision boundary in the input space. 

 in a wide range of real 

. A function 

m  

nding class label. 

Every data point is under the same pro y),  

1.4.5.1. Theory and algorithm 

The beauty of SVM is not only in its successful applications

world classification problems, but also from where it starts.  

Support vector machine aims to recognize patterns by learning process

apping is described by training data set (xi, yi) for pattern recognition: 

}1{: ±→NRf                                          (1) 

where xi are the n-dimensional feature vectors and yi are the correspo

bability distribution P(x, 

}1{),),...(,(),,( 2221 ±∈ XRyxyxyx N
ll                     (2) 

The function f is well generalized so that the training dataset (xi, yi), i = 1, 2, …, l, 

satisfy f (xi) = yi. Through the learning, the function f is usually able to correctly 

recognize new examples (xj, yj), by satisfying f (xj) = yj. However, the fact is that the 

generalized function f from the training dataset may have the poor performance on 

predicting new samples. That is, for any test dataset (xj, yj) ∈ RN X {±1} and  ∩ {x1, 

x2, …, xi} = { }, there exists another function f* such that f* (xi) = f (xi) for all i and f* 

(xj) ≠ f (xj) for all j.  

Thus, there no way to decide which decision function is better than the other. In order to 

minimize the testing error, the statistical learning theory or the Vapnik-Chervonenkis 
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(VC) theory101 is thus introduced to add the bounds on the test error. The minimization 

of these bounds, which depend on both the empirical risk (training error) and the 

capacity of the function class, leads to the principle of structural risk minimization151. 

The best-known capacity concept of VC theory is the VC dimension, defined as the 

largest number h of points that can be separated in all possible ways using functions of 

given class. If the h < l is the VC dimension of the class of functions that the machine 

le  all functions of that class, the bound with a probability 

of at least 1- η will be 

arning can implement, then for

))log(,()()(
ll

hRR emp
ηφαα +≤                           (3) 

where the confidence term φ is defined as 

l
h
l

ll
h 4

2

))log(,(

η
ηφ =                   (4) 

h )log()1(log −+

From the above function, in order to increase the capacity, a large VC dimension h 

The aim of SVM learning is to find the optimal separation hyperplane (OSH) that can 

separate the positive and negative samples by achieving maximum margins as shown in 

Figure 1-1. 

should be considered; the increase of h is accompanied by the increase of the 

confidence term φ. 
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Figure 1-1. The binary classification and the hyperplane. Hyperplanes 1±=+• bxw  
are boundaries of two classes of examples denoted by circles and squares. The OSH 

 is decision hyperplane to separate the positive and negative samples. 0=+• bxw
 

 

0=+• bxw  

1−=iy  

1=+• bxw  

w w
2

 

 

 

 

 

 

 

 
1−=+• bxw 0=+• bxw  

26 



Chapter 1 Introduction 

Any hyperplane that can separate the input samples in the n-dimensions space can be 

described as follows: 

0) +⋅ bxw RbR N ∈∈ , )               ( =       (         (5) 

                (6) 

w

where w is the weight vector and the corresponding decision functions 

))(()( bxwsignx +⋅=                    f

It has been proved that the OSH is a unique one among the hyperplanes described in 

equation (5) which could yield the maximum margin of separation between the 

classes152, 

bw,
max },...,2,1,0)(,R||:min{|| N libxwxxx i ==+⋅∈−      (7) 

The construction of the Optimal Hyperplane is achieved by solving the following 

optimization problem: 

minimize 2||||1) ww =                               (
2

(τ 8) 

subject to libxwy ii ,...,2,1,1))(( =≥+⋅⋅                (9) 

ization problem, the Langrangian and the Lagrange 

multiplier αi is introduced, 

To solve the constrained optim

∑
=

=
l

2
1)α −+⋅⋅−

i
iii bwxywbwL

1

2 )1))(((||||,,( α           (10) 

Where 0≥iα . The Lagrangian L has to be minimized with respect to the primal 

expansion 

variables w and b and maximized with respect to the dual variables αi. w here has an 

∑= i iii xyw α in terms of a subset of t  patters, called Support he training
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Vector while αi is non-zero.  S ject to  and  ∑
=

=
l

i
ii y

1
0αolving the formula (10) sub

0≥iα , the hyperplane decision function can thus be written as 
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where b is calculated by 

∑
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.,...,2,1,0]1))(([ libwxy iii ==−+⋅⋅α                   (12) 

ension space where the 

problem can function non-linearly maps 

ase when the relation 

between class labels and attributes is nonlinear: 

                                        (13) 

This requires the evaluation of dot products by a simple kernel function,  

1.4.5.2. Feature Spaces and Kernels 

When the examples is inseparable by linear SVM, the SVM OSH is developed by 

mapping data from input dimension space into higher dim

 be solved by linear approach. The kernel 

samples into a higher dimensional space, so it can handle the c

FRN →:φ

F is the hyperspace where the original problem becomes linear. 

))()((:),( yxyxk φφ ⋅=                               (14) 

ernel,  

k                         (15) 

s N le, d = 2 and x, y ∈ R2, then 

If F is high-dimensional, then kernel function, polynomial k

dyxyx )(),( ⋅=             

can be shown to correspond to a map φ into the space spanned by all products of exactly 

d dimen ions of R . For examp
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φ  can be constructed.  

A very useful kernel is Gaussian radial basis function (RBF): 
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−

The RBF function is chosen in this study because it has few numbers of parameters that 

fluence the complexity of model selection. Furthermore, it reduces computation cost 

compared with polynomial kernels that kernel values may go to infinity or zero while 

the degree is large. In addition, RBF kernel has been commonly used in other SVM 

protein studies with consistently better performance than other kernels such as linear 

and polynomial47, 168. 

 

in
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2. Scope and Research Objective 

One of the main purposes of this study is to develop a classification system for 

predicting protein functions from their primary sequences. There are four focuses for 

this objective. Firstly, the features vectors are constructed from protein primary 

sequence. Our designed physico-chemical properties derived from sequence are 

independent to sequence similarities. Secondly, the strategy employed in this work is to 

classify proteins according to their functional families from their primary sequences by 

using Support Vector Machines (SVM). SVM is a relatively new and promising 

algorithm for binary classification by means of supervised learning. Although the 

studies of SVM used to solve various problems have demonstrated that SVM is 

consistently superior to other supervised learning methods including classification 

methods166, 167, problems, such as data unbalance and over fitting are still critical when 

the optimal separation problem is addressed. Thirdly, the prediction system based on 

the well established SVM models are developed for solving the multiple-class 

classification problem. Various protein functional classes’ classification problems are 

properly solved before their use for protein function prediction. Lastly, the potential of 

our designed protein function prediction system for predicting novel proteins’ function 

are evaluated.  

Because the problems of resistance development and physiological side effects remain 

in current HIV-1 protease inhibitors, methods for facilitating early elimination of 

potential HIV-1 protease inhibitors are useful for speeding up new drug discovery. 

Another main objective of this study is to predict HIV protease inhibitors by statistical 

learning approach. In order to fulfill this task, four important components are brought 

forward.  Firstly, thousands of HIV-1 protease inhibitors are manually collected and 
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checked to ensure the data quality. Secondly, the non-protease inhibitors used as 

negative control are representatively selected by distribution analysis. In order to 

diversify the negative control data set, compounds database containing large number of 

compound structures is constructed for diversity analysis. Thirdly, feature selection is 

considered to select distinguishing features for identification of HIV-1 protease 

inhibitors. Lastly, the prediction system is developed for protease inhibitor prediction 

and novel HIV-Protease inhibitor design. 
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3. Methods used in this study 

3.1. Protein functional family classification and prediction 

3.1.1. Feature vector construction 

Construction of the feature vector for each protein is based on the formula used for the 

prediction of protein-protein interaction 14, protein fold recognition47, and protein 

family classification31, 43, 45, 46. Each feature vector is constructed from the encoded 

representations of tabulated residue properties including amino acids composition, 

hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, 

surface tension, secondary structure and solvent accessibility14, 43.  

Amino acid composition can be computed directly. Some of the methods for computing 

each of the other properties can be found from the literature14, 31, 43, 47, 49. For calculating 

each group of properties, amino acids are divided into three groups such that those in a 

particular group are considered to have the same property. For instance, amino acids 

can be divided into hydrophobic (CVLIMFW * ), neutral (GASTPHY), and polar 

(RKEDQN) groups. The groupings of amino acids for each of the properties are given 

in Table 3-1. Three descriptors, composition (C), transition (T), and distribution (D), 

are used to describe global composition of each of the properties. C is the number of 

amino acids of a particular property divided by the total number of amino acids in a 

protein sequence. T characterizes the percent frequency with which amino acids of a 

particular property is followed by amino acids of a different property. D measures the 

chain length within which the first, 25%, 50%, 75% and 100% of the amino acids of a 

particular property is located respectively.  

A hypothetical protein sequence AEAAAEAEEAAAAAEAEEEAAEEAEEEAAE, as 
                                                        
* List of amino acid in standard one letter amino acid codes 
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shown in Figure 3-1 , has 16 alanines (n1=16) and 14 glutamic acids (n2=14). The 

composition for these two amino acids are n1×100.00/(n1+n2)=53.33 and 

n2×100.00/(n1+n2)=46.67 respectively. There are 15 transitions from A to E or from E 

to A in this sequence and the percent frequency of these transitions is 

(15/29)×100.00=51.72. The first, 25%, 50%, 75% and 100% of alanines  are located 

within the first 1, 5, 12, 20, and 29 residues respectively. The D descriptor for alanines 

is thus 1/30 ×100.00=3.33, 5/30×100.00=16.67, 12/30×100.00=40.0, 

20/30×100.00=66.67, 29/30×100.00=96.67. Likewise, the D descriptor for glutamic is 

6.67, 26.67, 60.0, 76.67, 100.0. Overall, the amino acid composition descriptors for this 

sequence are C=(53.33, 46.67), T=(51.72), and D=(3.33, 16.67, 40.0, 66.67, 96.67, 

6.67, 26.67, 60.0, 76.67, 100.0) respectively. Descriptors for other properties can be 

computed by a similar procedure.  

Overall, there are 21 elements representing these three descriptors: 3 for C, 3 for T and 

15 for D. The feature vector of a protein is constructed by combining the 21 elements of 

all of these properties and the 20 elements of amino acid composition in sequential 

order. Table 3-2 gives the computed descriptors of the Purinergic receptor (Swiss-Prot 

AC O70397) with 474 amino acids. The feature vector of a protein is commutated by 

combining all of the descriptors in sequential order. 
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Figure 3-1 The sequence of a hypothetic protein and the illustration of feature vector 

derivation from its sequence. Sequence index indicates the position of an amino acid in 

the sequence. The index for each type of amino acids in the sequence (A or E) indicates 

the position of the first, second, third, … of that type of amino acid (The position of the 

first, second, third, …, A is at 1, 3, 4, …). A/E transition indicates the position of AE or 

EA pairs in the sequence.  
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Table 3-1 Division of amino acids into 3 different groups for different 
physicochemical properties 

 

Property   Group 1 Group 2 Group 3 
Type Polar Neutral Hydrophobic Hydrophobicity Amino Acids in Group RKEDQN GASTPHY CVLIMFW 
Value 0~2.78 2.95~4.0 4.43~8.08 van der Waals 

volume Amino Acids in Group GASCTPD NVEQIL MHKFRYW 
Value 4.9~6.2 8.0~9.2 10.4~13.0 Polarity Amino Acids in Group LIFWCMVY PATGS HQRKNED 
Value 0~0.108 0.128~0.186 0.219~0.409 Polarizability Amino acids GASDT CPNVEQIL KMHFRYW 

 
 

 

Table 3-2 Characteristic descriptors of Purinergic Receptor (Swiss-Prot AC O70397). 
The feature vector of this protein is constructed by combining all of the descriptors in 
sequential order. 

Property Elements of Descriptors of Purinergic Receptor (Swiss-Prot AC O70397) 
6.54 2.95 4.43 4.01 4.43 7.38 3.16 6.33 5.06 8.02 Amino acid 

composition 1.05 3.16 7.81 4.22 5.06 7.17 6.54 6.96 1.89 3.80 
25.95 42.41 31.65 23.04 18.39 25.16 1.48 23.00 47.68 75.11
99.79 0.42 27.00 53.16 79.96 99.58 0.21 22.57 48.10 71.52Hydrophobicity
100.0  
42.83 32.70 24.47 28.12 20.51 14.80 0.42 28.48 53.80 80.38
99.58 2.53 20.04 49.36 73.42 100.0 0.21 21.94 46.41 66.46Van der waals 

volume 98.95  
35.44 35.44 29.11 23.47 23.04 21.35 0.21 22.36 47.26 70.68
100.0 0.42 27.00 54.01 81.22 99.58 1.05 24.47 48.31 75.11Polarity 
99.79  
32.07 43.46 24.47 30.66 15.01 20.30 0.42 28.48 53.16 76.16
99.58 1.27 23.42 50.63 76.79 100.0 0.21 21.94 46.41 66.46Polarizability 
98.95  

 

3.1.2. Effective selection of examples 

Statistical learning process of binary classification SVM requires both positive 

examples and negative samples, for example, proteins examples from a particular 

functional family and those outside of this family. The positive samples of a family 

include all of the known distinct proteins in that family. Ideally, the negative samples of 

the given family should include all of the proteins outside of the family. Because the 

proteins are enormous, it is impractical to include all of the proteins outside of the 
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family as negative examples for statistical learning. Thus, the negative samples selected 

statistical learning should be restricted to a manageable level by using a minimum set of 

representative proteins.  

Our approach to select effective proteins examples is to choose a few distinct proteins 

from each protein family. The negative samples of a family can be selected from seed 

proteins of the curated protein families in the Pfam database169 excluding those families 

that have at least one member belongs to the Pfam family. The purpose of using Pfam 

families to generate negative protein examples is to ensure that the negative examples 

are more evenly distributed in the protein space than random selection. However, only 

the selection of negative examples is involved in using of Pfam families that are based 

on sequence similarity; the positive examples are collected without any consideration 

of sequence similarity. Thus, our approach for protein functional family classification 

is to some extent independent of sequence similarity.  

3.1.3. Support Vector Machine classification 

As the theory of SVM has been described in the previous section, only a brief 

description of our strategy of the implementation is given here. 

In nonlinearly separable cases, SVM maps feature vectors into a high dimensional 

feature space using a kernel function ),( ji xx . The kernel function employed in this 

work is the Gaussian kernel, which has been extensively used in a number of protein 

classification studies

K

14, 31, 44, 47-49, 153: 

2 2/ 2( , ) j iei jK σ− −= x xx x                                                  (1) 

The linear SVM procedure is then applied to the feature vectors in this feature space 

and the decision function for their classification is given by:  
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Where the coefficients αi
0 and b are determined by maximizing the following 

Langrangian expression:  
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Under conditions:  

ia yα≥ =∑                                                (4) 

hard margin SVM with threshold instead of soft margin SVM is used in our 

ss) and negative prediction (proteins that do not 

47: 

1i=

A positive or negative value from Equation (2) determines whether the vector x belongs 

to the positive or negative group. In order to reduce the complexity of parameter 

selection, 

0    and     0
l

i i

program. 

As in the case of all discriminative methods170, 171, the performance of SVM 

classification can be measured by the quantity of true positive TP (correctly predicted 

members), false negative FN (incorrectly predicted as non-members), true negative TN 

(correctly predicted non-members), and false positive FP (non-members incorrectly 

predicted as members). In this work, protein functional family classification is a 

one-against-other multi-class prediction problem, thus the unique accuracy47 

specifically designed for evaluation of multi-class prediction is used. Due to the 

imbalanced number of positive and negative samples for each sub-class, two unique 

accuracies Qp and Qn are used to measure the accuracy of positive prediction (proteins 

that belong to a specific functional cla

belong to a given functional class) 
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uantity suitable for evaluating the classification accuracy of imbalanced 

positive and negative samples is the Matthews correlation coefficient C172, which is 

given by: 

 

Another q
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A reliability index of SVM protein family p n introduced in 

this study to represent the level of the signal of decision function. 
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lue, is introduced to indicate the expected 

classification accuracy. P-value is derived from the statistical relationship between the 

R-value and actual classification accuracy based on the analysis of 9,932 positive and 

45,999 negative samples of proteins 43. 
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Where d is the distance between the position of the vector of a classified protein and the 

optimal separating hyperplane in the hyperspace. A statistical correlation between 

R-value and expected classification accuracy or probability of correct classification  

as show in Figure 3-2. Another quantity, P-va

<≤
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Figure 3-2 Expected classification accuracy P-value (probability of correct 
classification) versus R-value. It is derived from the statistical relationship between 
the R-value and actual classification accuracy based on the analysis of 9,932 positive 
and 45,999 negative samples of proteins. 

 

 

 

 

 

 

3.1.4. Protein functional family classification systems-SVMProt  

In this work, we have developed a protein functional family classification systems, 

SVMProt153, based on support vector machines (SVM) for protein functional family 

prediction. The construction of SVMProt protein function prediction system is 

currently containing 97 protein functional classes as listed in Appendix A. The 97 

protein functional classes include 46 enzyme families, 9 channel/transporter families, 

21 transporter families, 4 RNA-binding protein families, DNA-binding proteins, 5 

G-protein coupled receptors, nuclear receptors, tyrosine receptor kinases, cell adhesion 

proteins, coat proteins, envelope proteins, outer membrane proteins, structural proteins, 

and growth factors. Two broadly defined families of antigens and transmembrane 

proteins are also included.  

Every protein function classification model in SVMProt has been trained and tested by 

using a large number of proteins. A training set contains positive examples those 

proteins belong to a functional family, and negative examples referring to those outside 

a family. The negative examples of a protein family are collected from representative 
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proteins of the Pfam families without a member in that class A training set needs to be 

both diverse and kept as small as possible in order to ensure adequate representation 

and to reduce un-necessary noise generated from data redundancy.  

 

The numbers of member and non-member protein sequences in the training sets are in 

the range of 14~3,892 and 513~7,299 respectively, and those of the independent 

evaluation sets are in the range of 7~4,841 and 986~7,291 respectively. For examples, 

945 glycosyltransferases proteins and 1,896 non- glycosyltransferases are used for 

training glycosyltransferases (EC2.4) family, and there are 288 glycosyltransferases 

proteins and 4,926 non- glycosyltransferases are used for independent evaluation of 

glycosyltransferases (EC2.4) family. The number of sequences in all classes can be 

found in the Appendix A. 

We develop the protein classification model in the following manner. First, every 

protein sequence is represented by specific feature vectors assembled from encoded 

representations of tabulated residue properties including amino acid composition, 

hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, 

surface tension, secondary structure and solvent accessibility for each residue in the 

sequence. The feature vectors of the positive and negative samples are used to train a 

SVMProt classifier. The trained SVMProt classifier is used to determine whether a 

protein belongs to this protein functional class or not. 

The SVMProt training system for each family is optimized and tested using separate 

testing sets of both positive and negative samples. Those proteins outside of the training 

set for each functional family are positive examples of the testing set, and all the 

representative seed proteins in Pfam curated families not used for model training are 
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negative examples of the testing set. The performance of SVMProt classification is 

further evaluated by using independent sets consisted of both positive and negative 

examples. There is no overlap in each training, testing or independent evaluation set. 

Not all of the protein functional classes in SVMProt are at the same hierarchical level. 

These protein functional classes are mixtures of subfamilies, families and 

super-families. Some classes, such as antigen, are superfamily. While it is desirable to 

define all of the classes at the same level, this is not yet possible because of 

insufficiency of data for the sub-hierarchies of some families and super-families. 

Because of independency of SVMProt classifiers, different classification models can 

work simultaneously. 

3.2. Methods for protein inhibitor prediction 

3.2.1. Molecular descriptors 

As shown in Table 3-3, a set of 159 molecular descriptors were used for quantitative 

description of structural and physiochemical properties of molecules in this study. 

There are 18 simple molecular properties, 28 molecular connectivity and shape 

descriptors, 84 descriptors computed from electro-topological state, 13 quantum 

chemical properties and 16 geometrical properties. All of these descriptors are 

calculated from the 3D structure of compound by using our previously published 

molecular descriptor program173. 
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Table 3-3 Molecular Descriptors used in this work 

Descriptor class Number of 
descriptors Descriptors 

Simple molecular properties 18 Molecular weight, number of ring structures, number of rotatable bonds, number of H-bond donors, 
number of H-bond acceptors, element counts 

Molecular connectivity and shape 28 Molecular connectivity indices, valence molecular connectivity indices, molecular shape, Kappa 
indices, Kappa alpha indices, flexibility index 

Electro-topological state 84 Electrotopological state indices and atom type electrotopological state indices 

Quantum chemical properties 13 

Atomic charge on the most positively charged H atom, largest negative charge on an non-H atom, 
polarizability index, hydrogen bond acceptor basicity (covalent BAB), 
hydrogen bond donor acidity (covalent HBDA),   molecular dipole moment, absolute hardness, 
softness, ionization potential, electron affinity, chemical potential, electronegativity index, 
electrophilicity index 

Geometrical properties 16 

Molecular size vectors (distance of the longest separated atom pairs, combined distance of the 
longest separated three atoms, combined distance of the longest separated four atoms), molecular 
van der Waals volume, solvent accessible surface area, molecular surface area, van der Waals 
surface area, polar molecular surface area, sum of solvent accessible surface areas of positively 
charged atoms, sum of solvent accessible surface areas of negatively charged atoms, sum of charge 
weighted solvent accessible surface areas of positively charged atoms, sum of charge weighted 
solvent accessible surface areas of negatively charged atoms, sum of van der Waals surface areas of 
positively charged atoms, sum of van der Waals surface areas of negatively charged atoms, sum of 
charge weighted van der Waals surface areas of positively charged atoms, sum of charge weighted 
van der Waals surface areas of negatively charged atoms. 
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3.2.2. Selection of HIV-1 PI candidates 

4291 HIV-1 PI candidates are selected as positive training samples from the HIV/OI 

Enzyme Inhibition Database†  of the National Institute of Allergy and Infectious 

Diseases, National Institutes of Health. 

Since the quality of input data have a direct effect in the training of the SVM model, the 

positive samples from the database were further examined by checking each of the PIs 

against PubMed Database174 to ascertain that they have been described as HIV-1 

protease inhibitors. Only those with reported IC50‡ (inhibitory concentration 50%) in 

the literature were selected. Meanwhile, since PIs constitute a large chemical space 

(sulfonamides, benzopyrans, piperazines, benzimidazoles, urethanes, symmetry-based 

dihydroxy, epoxies etc.) with varying potencies for uses in different contexts, those 

with reported log (IC50) of log units -7.85 to 3.30 were selected. 

3.2.3. Selection of HIV-1 non-PI candidates 

There are numerous and diversified compounds. Thus, it is impractical to include all 

compounds outside of a specific family as negative examples. It is reliable to use 

experimentally determined negative compound examples, such as those compounds 

with non-inhibition activities to a specific protein target. However, only a small number 

of true negative examples have been report for some protein target. As such, it is 

inadequate to use those compounds to approximate the complete negative compounds 

space.  

Our approach to generate comprehensive negative examples is to choose representative 

compounds from the compound space that is not covered by positive examples.  

In order to analyze the distribution of positive examples within the compounds space, a 
                                                        
† HIV/OI Enzyme Inhibition Database: http://www.niaid.nih.gov/daids/ 
‡ IC50 (or EC50 - effective concentration 50%) is the concentration required for 50% inhibition. 
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chemical database composed of 85,000 is constructed in this study. These compounds 

and their 3D structures are selected from MDDR (MDL Drug Data Report), ACD 

(MDL Available Chemicals Directory) and ChemIDPlus§, ChemFinder** databases. 

Subsequently, we use the hierarchal clustering method to cluster these compounds into 

8,000 subfamilies according to the Euclidean distance of their descriptors.  

By this means, the compound space is condensed into 8,000 subfamilies instead of the 

original 85,000 compounds. The distribution of positive compounds is calculated based 

on the 8,000 subfamilies. Thus the distribution of negative examples could be obtained 

from the compound space that not occupied by positive examples.  

The selection of Non-PIs is based on the distribution of PIs. In this study, 12,453 

negative samples are selected to ensure data balance in the 2-class c-SVM model that is 

used. There are basically two requirements for the selection of negative example: 1) 

their structures are vary from each other, and 2) the distribution of the negative 

examples should be diversified enough to form an effective representation of negative 

compound space.  

The crude 3-dimensional structures collected from the databases are converted into 

accurate, energy-based geometry optimized 3-dimensional structures by using 

commercial software, Concord™††. 

3.2.4. Recursive feature elimination within non-linear SVM 

The purpose of feature or variable selection is to eliminate irrelevant variables to 

enhance the generalization performance of a given learning algorithm. The selected 

predominated variables show some insight about the concept to be learned 175. 

                                                        
§ http://chem.sis.nlm.nih.gov/chemidplus/ 
** http://chemfinder.cambridgesoft.com/ 
†† Tripos product Sheet, 2004 
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In this work, recursive feature elimination (RFE) using SVM-based Criteria has been 

employed to select important features for identifying HIV-protease inhibitors. Linear 

RFE-SVM algorithm has been introduced by Guyon 176 for gene selection on cancer 

classification. In this work, the algorithm is extended to solve non-linear cases. 

As Kohavi and John177 suggested, the ranking criterion for feature selection can be 

computed from feature’s influence on the objective function. In this study, the objective 

function is represented by a cost function for the ith feature in the training set. 

The basic idea of RFE is to find and remove the smallest change in cost function 

resulting from the features. In our case, the cost function to be minimized is: 

LaHaa TT −=
1                               J
2

            (9) 

under the constraints Ci ≤≤α0  and_∑ = 0ii yα ;  

where H is the matrix with elements , K is a RBF kernel function that 

measures the similarity between and , and L is an l dimensional vector of ones. 

),( jiji xxKyy

i j

One can compute change in cost function by assuming no change in the value of the a . 

Thus, one avoids having to retrain a classifier for every candidate feature to be 

eliminated. In order to compute the change in cost function caused by removing input 

component 

x  x

δ  ,  we can leaves the a  unchanged and one re-computes matrix H  

corresponds to calculate 

. This

))(),(( δδ excludexexcludexKyy jiji                         (10) 

yielding matrix )( δexcludeH , where the notation δexclude  means that component δ  

has been removed. The resulting ranking coefficient is:  

                   (11) aexcludeHaHaaDJ YT )(5.05.0)( δδ −=
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The input corresponding to the smallest difference )(δD  is removed. This procedure 

is iterated until the final list of predominated feature is obtained

J

. 
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4. Protein functional family classification based 
on primary sequence by Support Vector 
Machines 

The work in this chapter has been published in: 

I) Enzyme Family Classification by Support Vector Machines. C.Z. Cai, L.Y. Han, 
Z.L. Ji, Y.Z. Chen .Proteins. 55,66-76 (2004). 

II) Prediction of RNA-Binding Proteins from Primary Sequence by Support Vector 
Machine Approach. L.Y. Han, C.Z. Cai, S. L. Lo, Maxey C. M. Chung,Y. Z. 
Chen. RNA. 10(3),355-368. (2004). 

III) Prediction of Transporter Family by Support Vector Machine Approach H. H. 
Lin, L.Y. Han, C.Z. Cai, Z. L. Ji, and Y.Z. Chen. Proteins. 62 (1): 218-31 (2006) 

 

Determination of protein function is essential for understanding biological processes. 

Our approach for predicting protein function is based on the protein functional family 

classification. The method used in our study for protein functional family classification 

starts from the analysis of physicochemical properties of a protein derived from its 

primary sequence. In the coming sections, our results of classification on some specific 

protein functional families, such as enzymes and transporters, are described. 

4.1. Enzyme Family Classification (Paper I) 

Enzymes represent the largest and most diverse group of all proteins, catalyzing 

chemical reactions an organism needs to survive. In addition, enzymes are well 

classified into functional families according to the recommendation by the 

classification of enzyme nomenclature committee of IUBMB178. Therefore, enzymes 

are ideal for comprehensive testing of SVM protein family classification systems. In 

our study for protein family classification, enzymes from protein sequence database 

have been classified into 46 enzyme families and classifier for each enzyme family has 

been further tested by independent evaluation. The optimized enzyme classifiers are 
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also evaluated for their capability in the classification of distantly related enzymes and 

homologous enzymes with different function. 

4.1.1. Methods 

The definitions of enzyme families are obtained from BRENDA database179. As  

sufficient number of samples are required for developing a SVM classification system 

with statistical significance, only 46 enzyme families with more than 100 

non-redundant protein entries for each family in Swiss-Prot Enzyme database180 are 

selected in our study. Appendix A gives the list of enzyme families along with the 

number of enzymes for each family used for training, testing and evaluating SVM 

classification system. 

All distinct members in each enzyme family found in Swiss-Prot database180 are used to 

construct positive samples for training SVM. Based on the definition of enzyme 

families in BRENDA179 and annotations in Pfam database 180, the negative samples for 

each enzyme family are selected from seed proteins of the curated protein families in 

the Pfam database169. Negative samples of one enzyme family include proteins from 

other enzyme families and non-enzyme proteins such as receptors, transporters, 

channels and matrix proteins. The redundancy in the selected datasets has been further 

removed by sequence comparisons. 

Every enzyme sequence is represented by specific feature vectors assembled from 

encoded representations of tabulated residue properties including amino acid 

composition, hydrophobicity, normalized van der Waals volume, polarity, 

polarizability, charge, surface tension, secondary structure and solvent accessibility for 

each residue in the sequence14, 31, 47-49, 181, 182. There is some level of overlap in the 

descriptors for hydrophobicity, polarity, and surface tension. Our study of these 
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descriptors by principle component analysis suggests that the use of the PCA-reduced 

descriptors only moderately improves the accuracy for only some of the families. As it 

is also noted that reasonably accurate results have been obtained in various protein 

classification studies using these overlapping descriptors14, 31, 47-49, 181, 182. Thus, we 

choose the whole set of descriptors for our SVM study.  

The constructed feature vectors of both positive samples  and negative samples are 

then input into SVM classification system to train it to identify features that separate 

positive and negative samples. The trained SVM systems can thus be used to classify an 

enzyme into either the positive group or the negative group of each family. One enzyme 

is predicted to be a member of a family if it is classified into the positive group of that 

family. Likewise, it is predicted to not belong to a family if it is classified into the 

negative group of that family.  

 

The theory of SVM has been earlier described in Chapter 2. Thus, only the method for 

performance measurement is given here. As in the case of all discriminative methods171, 

183,  the performance of SVM classification can be measured by the quantity of true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

Enzyme family classification is a one-against-others multi-classes classification 

problem, thus the unique accuracy47, sensitivity and specificity, for evaluation of 

multi-class prediction is used in this study. Because the number of positive and 

negative samples for each family is imbalanced in size, an additional measure,  

Matthews correlation coefficient C172 (appears in Chapter 2),  is used to measure the 

randomness and the performance of SVM prediction. 
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4.1.2. Result and Discussion 

4.1.2.1. Assessment of overall accuracy of SVM enzyme family 

classification  

The results for the classification of the 46 enzyme families are given in Appendix Table 

A. All the computed TP, TN, FP, and FN for the testing sets and independent evaluation 

sets of these families are as shown in the Table. Table A also gives the unique 

classification accuracies Qp and Qn and Matthews correlation coefficient C for every 

family measured by using independent evaluation sets. The computed Qp, Qn and C for 

the 46 enzyme families are in the range of 53.0% to 99.3%, 82.1.0% to 100%, and 

54.1% to 96.1% respectively. These numbers on average are better improved from that 

obtained in other SVM studies of proteins14, 31, 47-49, 181, 182. One possible reason for this 

improvement is the use of representative proteins of Pfam curated families as negative 

samples for SVM classification, they provides a more comprehensive sampling of 

proteins not in an enzyme family.  

Table 4-1 lists a number of randomly selected enzyme entries from Swiss-Prot 

database180 which are not correctly classified into the corresponding family by our 

developed SVM classifiers . Amino acid sequence of each of these enzyme entries is 

examined to find out whether or not the classification error is caused by 

sequence-related problems such as fragment, incomplete chain, and mutations. As 

shown in Table 4-2, the composition of the negative samples for a specific enzyme 

family is diversified, thus these sequence-related problems do not appear to be a 

significant factor for the classification error. BLAST sequence alignment of each of 

these enzymes against other members of its family suggests these substantial portions 

(61.3%) of incorrectly classified enzymes are of low sequence similarity to other 

members in its family. Here, the threshold for sequence similarity score E value is 0.05. 
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The percentage of low sequence similarity proteins in a family is not expected to be 

very high. Therefore, our study seems to suggest that sequence similarity has certain 

level of influence on the accuracy of SVM classification. 
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Table 4-1.Randomly selected enzyme entries from Swiss-Prot database which are not 

correctly classified into their corresponding family in our study.  

EC 
Family 
number 

Swiss Prot 
Accession 
number 

Protein Name Sequence 
feature∗

Sequence 
similarity 
to other 

members of 
family*

EC 1.1 Q8YH79 Alcohol dehydrogenase C L 

EC 1.14 P79078 Delta-9 fatty acid desaturase C S 

EC 1.14 Q8TE42 Truncated steroid 21-hydroxylase IC L 

EC 1.14 P14791 Heme oxygenase C L 

EC 1.2 O67724 N-acetyl-γ-glutamyl-phosphate 
reductase C L 

EC 1.2 Q57658 Aspartate-semialdehyde 
dehydrogenase C L 

EC 2.1 Q9ZE37 tRNA 
(Guanine-N(1)-)-methyltransferase C S 

EC 2.1 Q9PJ28 Methionyl-tRNA 
formyltransferase C S 

EC 2.1 Q9UX08 Aspartate carbamoyltransferase C L 

EC 2.1 P96111 PyrBI protein C L 

EC 2.7 Q9JR61 Phosphatidylserine synthase C L 

EC 2.7 Q9ZE96 Phosphatidylglycerophosphate 
synthase C L 

EC 3.1 Q62087 Serum paraoxonase/arylesterase 3 C L 

EC 3.1 Q97VT7 Aryldialkylphosphatase, putative C S 

EC 3.2 Q9EVP3 Stx2fA protein subunit C, subunit L 

EC 3.2 Q9S9E4 rRNA-glycosidase C L 

EC 3.2 Q41216 Trichosanthin C L 

                                                        
∗ C—Complete sequence; IC—Incomplete sequence; C,subunit—Complete sequence of subunit; 
C,chain—Complete sequence of chain; L—Low sequence similarity to other enzymes in a particular 
family; S—Significant sequence similarity to other enzymes in a particular family 
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EC 3.5 P32320 Cytidine deaminase C, subunit L 

EC 3.5 Q01432 AMP deaminase 3 C, subunit L 

EC 3.5 Q49135 Methenyltetrahydrofolate 
cyclohydrolase C, subunit S 

EC 4.2 P73715 Endonuclease III C S 

EC 4.2 Q8RI68 Cystathionine gamma-synthase C S 

EC 4.3 Q8XMJ8 Argininosuccinate lyase C S 

EC 5.1 Q980W1 UDP-glucose 4-epimerase C S 

EC 5.1 P21955 Aldose 1-epimerase C L 

EC 5.3 P29954 Mannose-6-phosphate isomerase C S 

EC 5.4 Q8Z8D7 UDP-galactopyranose mutase C S 

EC 6.1 Q8YH72 Alanyl-tRNA synthetase C L 

EC 6.1 Q9ZDF8 Lysyl-tRNA synthetase C L 

EC 6.1 Q9HJM5 Glutamyl-tRNA synthetase C L 

EC 6.1 Q55486 Arginyl-tRNA synthetase C L 

EC 6.3 P57245 Carbamoyl-phosphate synthase, 
small chain C, chain S 
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Table 4-2 Composition of the negative samples for EC2.7 family. Here “other 
proteins” include proteins known to not belong to any of the families listed and those 
enzymes whose EC number is not specified at the time of our data Collection 

 
Family No. of Entries Family No. of Entries 

EC  1.1 10 EC  3.3 2 
EC  1.2 3 EC  3.4 12 
EC  1.3 17 EC  3.5 9 
EC  1.4 6 EC  3.6 33 
EC  1.5 2 EC  4.1 28 
EC  1.6 7 EC  4.2 18 
EC  1.7 2 EC  4.4 7 
EC  1.8 1 EC  4.6 5 
EC  1.9 24 EC  5.1 7 
EC 1.10 8 EC  5.4 3 
EC 1.11 4 EC  5.5 1 
EC 1.13 4 EC 5.99 9 
EC 1.14 1 EC  6.1 1 
EC 1.15 3 EC  6.2 1 
EC 1.18 2 EC  6.3 20 
EC  2.1 11 EC  6.4 6 
EC  2.3 20 EC  6.5 9 
EC  2.4 20 Receptors 17 
EC  2.5 4 Transporters 53 
EC  3.1 30 Channels 11 
EC  3.2 33 Other proteins  1455 

 

54 



Chapter 4 Classification of the functional classes of proteins based on primary sequence 

  

The quality of each of SVM classifiers trained for classification of a particular enzyme 

family can be further assessed by conducting direct two-way tests. For such a purpose, 

a set of 3000 enzymes in a randomly selected enzyme family EC1.6 is used for testing 

the accuracy of positive classification for that family. It is found that 76.8% of these 

enzymes are correctly classified into the EC1.6 family by our SVM system. A set of 

2850 randomly selected non-enzyme proteins is used for assessing the accuracy of 

negative classification for that enzyme family. It is found that 98.5% of these 

non-enzyme proteins are correctly classified as not belong to the EC1.6 family. This 

result is comparable to the independent evaluation of the EC1.6 family in out study, 

where the sensitivity and specificity are 94.5 and 98.2 respectively. 

4.1.2.2. Independent evaluation and 10-fold cross validation  

In this work, independent evaluation sets were used to determine the accuracy of 

enzyme family classification. To examine whether it can provide sufficiently accurate 

assessment of prediction accuracy, we have conducted 10 fold cross validation on three 

randomly selected families to compare with our results from independent evaluation. 

Table 4-3 show the results of the 10-fold cross validation study for the EC1.9, EC4.4 

and EC5.2 family respectively. For comparison, the results from our study are also 

included in the respective Table. It is found that the computed Qp, Qn, and C for each of 

these families using our method is roughly similar to those obtained by using 10-fold 

cross validation study. This suggests that our method may be used to assess the quality 

of SVM enzyme family classification, with a comparable accuracy as that of n-fold 

cross validation study. 
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Table 4-3 Ten-fold Cross Validation Results of EC1.9, EC4.4 and EC5.2 family. The 
true positive TP means number of correctly predicted members, false negative FN is 
the number of incorrectly predicted as non-members, true negative TN is the number 
of correctly predicted non-members, and false positive FP is the number of 
non-members incorrectly predicted as members. Sensitivity Qp and specificity Qn are 
defined as Qp=TP/(TP+FN), Qn=TN/(TN+FP), Matthews correlation coefficient C172, 
which is given by equation (7) in Chapter 1. 

 

Performance measures EC family 
Qn(%) Qp(%) C 

10 CV 94.2 99.3 0.947 EC1.9 Independent Evaluations 95.7 99.5 0.961 
10 CV 65.7 99.9 0.791 EC4.4 Independent Evaluations 50.0 99.9 0.679 
10 CV 66.7 99.9 0.800 EC5.2 Independent Evaluations 65.3 99.8 0.776 

 

 

4.1.3. Conclusion remark 

Our study suggests the potential usefulness of SVM in classification of enzymes into 

functional families. The developed SVM models by using sequence derived 

physico-chemical properties are able to discriminate enzymes into their functional 

families with comparable accuracies and even better than other protein function 

prediction methods14, 31, 47-49, 181, 182. Moreover, it shows the capability for classification 

of enzymes with very low sequence similarities. The enzyme classification SVM 

models are very useful for classifying an unknown protein. As it is revealed in our study, 

the quality and diversity of enzyme protein samples and proteins as negative samples is 

very important for developing a SVM model with both good sensitivity and specificity. 

Our results also suggest that the developed SVM classification models could be a 

useful tool for facilitating protein function prediction.  
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4.2. Classification of RNA-Binding Proteins (Paper II) 

 

Knowledge about how proteins interact with each other and with other molecules is 

essential in the understanding of cellular processes184-187. With the accumulation of 

sequence information, attention has been paid to the development of methods for 

predicting protein function188 and protein-protein interactions14, 189, 190 from sequence. 

Several computational methods have been developed for the prediction of 

protein-protein interactions using support vector machines14 and for the prediction of 

protein-protein interaction maps by Rosetta/gene fusion12, 191, phylogenetic profile192, 

gene neighbor189, 190, and interacting domain profile pair193 methods.  

 

While progress has been made in the development of predictive methods for 

protein-protein interactions, there is no effort has been made for predicting 

protein-RNA interactions by using machine-learning approach. Most cellular RNAs 

work in concert with protein partners and protein-RNA interactions are critically 

important in regulation of different steps of gene expression186. Moreover, binding of 

proteins to some catalytic RNA molecules are known to activate or enhance the activity 

of these molecules 194. Therefore, prediction of protein-RNA interactions is very 

important for understanding how cellular processes and biological network works.  

 

In this work, the use of SVM for the prediction of RNA-binding proteins from protein 

primary sequence was explored. SVM is used for the prediction of individual classes of 

rRNA-, mRNA-, tRNA-binding proteins as well as all RNA-binding proteins. There 

are other groups of RNA-binding proteins, such as snRNA-binding and 
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snoRNA-binding proteins, with small number of proteins and fewer available 

sequences195, 196. A search of protein family and sequence databases finds a total of 60 

sequences of snRNA-binding proteins and 21 sequences of snoRNA-binding proteins, 

which is fewer than the number of 80~100 sequences typically needed to properly train 

an SVM protein classification system. Non-the-less, to evaluate its performance on 

classification of a small protein class, SVM is used for the prediction of 

snRNA-binding proteins. Proteins of small RNA-binding classes as well as other 

RNA-binding proteins are included in training and testing SVM classification of all 

RNA-binding proteins.  

 

4.2.1. Selection of RNA-binding proteins and non- RNA- binding proteins 

 

All RNA-binding proteins used in this study are from a comprehensive search of 

Swiss-Prot database 180. A total number of 4458 RNA-binding protein sequences are 

obtained, which include 2054 rRNA-, 570 mRNA-, 259 tRNA-, 60 snRNA-, and 21 

snoRNA-binding proteins. The distribution of RNA-binding proteins in different 

kingdoms and in top 10 host species is given in Appendix Table B and that of each 

class of RNA-binding proteins is given in Table 4-4. As shown in the table, these 

RNA-binding proteins are from diverse range of species and all species appear to be 

adequately represented. 
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Table 4-4 Distribution of rRNA-, mRNA-, tRNA- and snRNA-binding proteins in different kingdoms and in top 10 host species. Not all 
protein sequences studied in this work are included because the host species information of some protein sequences is not yet available in 
the protein sequence database. 
 

rRNA-binding   mRNA-binding tRNA-binding snRNA-binding  

Kingdom or species 
No. of 

proteins

Kingdom or 

species 

No. of 

proteins 
Kingdom or species 

No. of 

proteins 
Kingdom or species 

No. of 

proteins 

Eucaryote     493 Eucaryote 310 Eucaryote 19 Eucaryote 50

Eubacteria       1330 Eubacteria 235 Eubacteria 230 Eubacteria -

Protein 

distribution 

in kingdom Archaea     181 Archaea - Archaea 10 Archaea -

Thermus thermophilus 32 Homo sapiens 77 Thermus thermophilus 6 Homo sapiens 18 

Aquifex aeolicus 29 Candida albicans 41 Homo sapiens 5 Candida albicans 15 

Mycobacterium leprae 28 Mus musculus 36 Bacillus subtilis 5 Mus musculus 5 

Chlamydia pneumoniae 28 
Schizosaccharom

yces pombe 
21 Escherichia coli 5 Xenopus laevis 3 

Helicobacter pylori 28 Escherichia coli 21 Pasteurella multocida 4 
Drosophila 

melanogaster 
3 

Protein 

distribution 

in top 10 

species 

Rickettsia prowazekii 28 
Arabidopsis 

thaliana 
19   Mycoplasma genitalium 4

Schizosaccharomyces 

pombe 
3 
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   Thermotoga maritima 28 
Caenorhabditis 

elegans 
18 Deinococcus radiodurans 4

Caenorhabditis 

elegans 
2 

Chlamydia trachomatis 28 
Drosophila 

melanogaster 
15 

Neisseria meningitidis 

(serogroup A) 
4   Rattus norvegicus 2

Borrelia burgdorferi 28 Rattus norvegicus 14 Helicobacter pylori 4 Arabidopsis thaliana 2 

Buchnera aphidicola 28 
Nicotiana 

tabacum 
11 Campylobacter jejuni 4 Macropus eugenii 1 



Chapter 4 Classification of the functional classes of proteins based on primary sequence 

 

Not all of the protein sequences in each of the RNA-binding classes are specified as 

such in the protein sequence database. We have manually checked all the selected 

RNA-binding protein sequences to ensure the data quality. The number of known 

snRNA- and snoRNA-binding proteins is much lower than those in the other groups195, 

196 and it is substantially below the number of 80~100 sequences needed to properly 

train a SVM protein classification system. In order to evaluate the performance of SVM 

on classification of a small protein class, the classification of snRNA binding proteins 

was also studied in this work.  

All distinct members in each group are used to construct positive samples for training, 

testing and independent evaluation of SVM classification system. The negative 

samples for training and testing are selected from seed proteins of the curated protein 

families in the Pfam database169 excluding those that belong to the group of 

RNA-binding proteins under study. For each group of non-rRNA-, non-mRNA-, 

non-tRNA-, non-snRNA-binding proteins, distinct members in the other three groups 

are added to the negative samples of each of the training, testing and independent 

evaluation set. It is expected that the number of negative samples in each of these three 

groups may be higher than that in the group of negative samples for all RNA-binding 

proteins.  

4.2.2. Results and discussion 

The number of positive and negative samples for each of the training, testing and 

independent evaluation set for each group of RNA-binding proteins is given in Table 

4-5.  The training set is composed of 708 rRNA-binding and 972 non-rRNA-binding 

proteins, 277 mRNA-binding and 2106 non-mRNA-binding proteins, 94 
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tRNA-binding and 792 non-tRNA-binding proteins, 33 snRNA-binding proteins and 

1988 non-snRNA-binding proteins, and 2161 RNA-binding proteins and 2965 

non-RNA-binding proteins. The testing set is comprised of 1245 rRNA-binding and 

9044 non-rRNA-binding proteins, 129 mRNA-binding and 10164 non-mRNA-binding 

proteins, 114 tRNA-binding and 9297 non-tRNA-binding proteins, and 1850 

RNA-binding proteins and 6816 non-RNA-binding proteins. The independent 

evaluation set is made of 101 rRNA-binding and 4997 non-rRNA-binding proteins, 164 

mRNA-binding and 6046 non-mRNA-binding proteins, 51 tRNA-binding and 5033 

non-tRNA-binding proteins, 20 snRNA-binding and 6151 non-snRNA-binding 

proteins, and 447 RNA-binding proteins and 4881 non-RNA-binding proteins. 
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Table 4-5 Prediction accuracies and number of positive and negative samples in the 
training, testing, and independent evaluation set of rRNA-, mRNA-, tRNA-, and 
snRNA-binding proteins and of all RNA-binding proteins respectively. Predicted 
results are given in TP (true positive), FN (false negative), TN (true negative), FP 
(false positive), sensitivity SE=TP/(TP+FN), specificity SP=TN/(TN+FP), and Q 
(overall accuracy, Q=(TN+TP)/(TP+FN+TN+FP)). Number of positive or negative 
samples in the testing and independent evaluation sets is TP+FN or TN+FP 
respectively. 

 
Training set Testing set Independent evaluation set 

positive negative positive negative 
Protein 

family positive negative 
TP FN TN FP TP FN SE (%) TN FP SP (%) 

Q(%)

RNA 

-binding 2161 2965 1844 6 6802 14 437 10 97.8 4685 196 96.0 96.1

rRNA 

-binding 708 972 1243 2 9031 13 95 6 94.1 4931 66 98.7 98.6

mRNA 

-binding 277 2106 129 0 10164 0 130 34 79.3 5833 213 96.5 96.0

tRNA 

-binding 94 792 114 0 9295 2 48 3 94.1 5028 5 99.9 99.8

snRNA 

-binding 33 1988 7 0 10373 1 9 11 41.0 6133 18 99.7 99.5
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The numbers and prediction results of specific class of RNA-binding proteins and 

non-class-members are given in Table 4-5. In this table, TP stands for true positive 

(correctly predicted RNA-binding proteins of specific class), FN stands for false 

negative (specific class of RNA-binding proteins incorrectly predicted as 

non-class-members), TN stands for true negative (correctly predicted 

non-class-members), and FP stands for false positive (non-class-members incorrectly 

predicted as specific class of RNA-binding proteins). The predicted sensitivity SE for 

rRNA-, mRNA-, tRNA-, snRNA-binding proteins and all RNA-binding proteins, 

which measures the overall prediction accuracy for each class of RNA-binding proteins, 

is 94.1%, 79.3%, 94.1%, 41.0% and 97.8% respectively. The predicted specificity SP 

for non-rRNA-, non-mRNA-, non-tRNA-, non-snRNA-binding proteins and all 

non-RNA-binding proteins, which measures prediction accuracy for each group of 

non-RNA-binding proteins, is 98.7%, 96.5%, 99.9% 99.7% and 96.0% respectively.  

4.2.2.1. Overall prediction accuracy 

A direct comparison with results from previous protein studies is inappropriate because 

of the differences in the specific aspects of proteins classified, dataset, descriptors and 

classification methods. Nevertheless, a tentative comparison may provide some crude 

estimate regarding the level of accuracy of our method with respect to those achieved 

by other studies of proteins. With the exception of snRNA-binding proteins, the range 

of accuracy for the prediction of each class of RNA-binding proteins from our study is 

from 79.3% to 97.8%, which is comparable to or better than the level of accuracy 

obtained from other SVM studies of proteins32, 43, 44, 197-201 as summarized in the Table 

4-6. 

.
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Table 4-6. Performance of Support Vector Machines for predicting protein functional classes as reported in the literature. All of the 
data and results were collected from the original papers. N+, N- and N are the number of class members, non-members and all 
proteins (members + non-members) respectively, SE and SP are prediction accuracy for class members and non-members 
respectively, Q is the overall accuracy. 

 

Reported Prediction 
Accuracy Protein 

Functional 
Class 

Protein Sub-Classes Protein Descriptors 

Number of 
Proteins in 

Training Set 
N (N+/N-) 

Validation 
Method SE 

(%) 
SP 
(%) Q(%)

Ref

Physicochemical properties 2247 (927/1320) Independent 
evaluation 95.6 98.1 97.4 43 All GPCRs 

Dipeptide composition 3302(778/2524) 5-fold CV 98.6 99.8 99.5 197 
Gi/o binding type 132(61/71) 4-fold CV 77.0 78.3  

Gq/11 binding type 132(47/85) 4-fold CV 68.1 72.7  

G-protein 
coupled 

receptors 

Gs binding type 

Structural characteristics 
(extra cellular loops, 

intracellular loops etc) 
132(24/108)   4-fold CV 83.3 95.2

198 

Amino acid composition 282 5-fold CV   82.6
Dipeptide composition 282 5-fold CV   97.5

32 
Nuclear receptors 

Physicochemical properties 872(334/538) Independent 
evaluation 89.5 97.6  43 

Amino acid composition, 
limited range correlation of 

hydrophobicity, solvent 
accessible surface area 

12507 (7739/4768) 10-fold CV 92.8 77.1 86.8 44 

5-fold CV 89.1 82.1 93.9 

DNA-binding proteins 

Surface and overall 
composition, overall charge 

and positive potential 
patches on the protein 

359 (121/238) 

Jackknife    90.5 81.8 94.9

199 
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surface 
 leave 1-pair 

holdout  
86.3   80.6 87.5

jackknife test   86.3
independent 

test   67.5Functional Domain 
Composition 2059 

self-consisten
cy   93.9

200 

jackknife test   82.4
independent 

test   90.3Pseudo-amino acid 
composition 2059 

self-consisten
cy   99.9

201 

Transmembrane proteins 

Physicochemical properties 4668(2105/2563) Independent 
evaluation 90.1 86.7 86.7 43 
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As a statistical learning method, sufficient number of samples is needed in order to 

properly train and test a SVM classification system. The total number of available 

snRNA-binding protein sequences is only 60, from which a very small training set of 

33 sequences is used in this work. As less positive examples tends to be less adequate or 

not enough in representing all types of proteins in a class, it is thus not surprising to find 

that the prediction accuracy for this RNA-binding class is at a very low level of 40%, in 

contrast to the level of 79.3% to 97.8% for other RNA-binding classes. 

The prediction accuracy for each group of non-RNA-binding proteins appears to be 

better than that for the corresponding group of RNA-binding proteins. The higher 

prediction accuracy for non-RNA-binding proteins likely results from the availability 

of sufficiently diverse set of non-RNA-binding proteins than that of RNA-binding 

proteins, which enables SVM to perform a better statistical learning for recognition of 

non-RNA-binding proteins. Based on the statistics provided on the webpage of Pfam 

database, there are more than 7,000 families of proteins, from which one can generate a 

diverse set of non-RNA-binding proteins.  

Inspection of individual misclassified protein sequences of different RNA-binding and 

non-RNA-binding classes, including those false negatives and false positives in the 

independent evaluation data sets, shows that a significant portion of these wrongly 

predicted protein sequences are either protein fragment or described as hypothetical, 

probable, or putative. Sequence incompleteness likely contributes to some of the 

prediction errors in this work. Many of the hypothetical, probable, and putative proteins 

are described primarily based on some form of distant sequence similarity relationship 

with existing proteins of known functions. 

The accuracy measures of the SVM prediction suggested that the prediction on 
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RNA-binding proteins is less accurate than that of non-RNA-binding proteins. One 

possible reason is that SVM based on an unbalanced datasets tends to produce feature 

vectors that push the hyperplane towards the side with smaller number of data 202, that 

can lead to a reduced accuracy for the set either with a smaller number of samples or of 

less diversity.  It is however inappropriate to simply reduce the size of 

non-RNA-binding proteins to artificially match that of RNA-binding proteins, since 

this compromises the diversity needed to fully represent all non-RNA-binding proteins. 

Computational methods for re-adjusting biased shift of hyperplane have been 

introduced166. Application of these methods may help improving SVM prediction 

accuracy in this and other cases involving unbalanced data. 

 

4.2.2.2. Classification of proteins with specific characteristics 

A number of RNA-binding proteins have a molecular structure and contain 

RNA-binding domains of 70-150 amino acids that mediate RNA recognition 203, 204. 

Three classes of RNA-binding domains have been documented to bind RNA in a 

sequence independent manner, and these domains are RNA-recognition motif (RRM), 

double-stranded RNA-binding motif (dsRM), and K-homology (KH) domain204. A 

fourth class of RNA-binding domain, S1 RNA-binding domain, has also been found in 

a number of RNA-associated proteins205. These domains have distinguished structural 

features responsible for RNA recognition and binding. Thus the performance of SVM 

classification of RNA-binding proteins can be evaluated by examining whether or not 

proteins containing one of these domains can be correctly classified as RNA-binding 

proteins.  
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A search of protein family and sequence databases shows that there are a total of 260, 

74, 190, and 41 RNA-binding protein sequences known to contain RRM, dsRM, KH 

and S1 RNA-binding domain respectively. The majority of these sequences are 

included in the training and testing set of all RNA-binding proteins. In the 

corresponding independent evaluation set, there are 35, 16, 93, and 10 sequences 

containing RRM, dsRM, KH, and S1 RNA-binding domain respectively. The 

prediction status and examples of these protein sequences are given in Table 4-7. All 

but one protein sequence are correctly classified as RNA-binding by SVM, which 

shows the capability of our trained SVM classification system. The only incorrectly 

predicted protein sequence is HnRNP-E2 protein fragment in the group that contains 

KH domain. The incompleteness of this sequence might partially contribute to its 

incorrect prediction by SVM. Thus, it is suggested that one must be aware of the pitfalls 

in statistical analysis of prediction accuracies of testing data. 

 

Some RNA-binding proteins are in a primarily sequence-specific manner. Typical 

examples are ribosomal proteins187 and a U8 snoRNA-specific binding protein196. 

Majority of the ribosomal protein entries are correctly predicted as rRNA-binding 

proteins. Inspection of the ribosomal protein entries that are incorrectly predicted as a 

non-rRNA-binding protein shows that some of these entries are protein fragment and 

some are described as hypothetical, probable, or putative. The prediction error for some 

of these sequences may be partly due to sequence incompleteness or low sequence 

similarity to those of other protein sequences in each class. Some ribosomal proteins 

are known to bind to mRNA and tRNA as well as rRNA, examples of these proteins are 

30S ribosomal protein S1, S3, S4. The multiple binding natures of these proteins likely 

makes it more difficult for a statistical classification system such as SVM to 
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Some proteins, such as dihydrofolate reductase and thymidylate synthase, are known to 

bind to their own mRNA206. Not all of these proteins are listed as RNA binding proteins 

in protein sequence databases. As a result, these mRNA-binding proteins may not be 

included in the right protein group, which likely affects prediction accuracy on these 

proteins. Hence, additional work is needed to search for these proteins and include 

them in the group of mRNA-binding proteins. 

 

unambiguously distinguish the features between rRNA-binding, mRNA-binding and 

tRNA-binding, which is another possible reason for the inaccurate classification of 

these sequences. 
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Table 4-7 Prediction statistics, examples and host species of RNA-binding protein sequences known to contain one of the 
RNA-recognition motif (RRM), double-stranded RNA-binding motif (dsRM), K-homology (KH), and S1 RNA-binding domain. Only 
those RNA-binding proteins in the independent evaluation sets are included. Host species of some protein sequences are not provided 
because the relevant information is not yet available in the protein sequence database. The only incorrectly predicted protein sequence 
with KH domain is HnRNP-E2 protein fragment. 
 

RNA-Binding Proteins Known to Contain Domain 

RNA-Binding 
Domain 

Number of 
RNA-bindin

g proteins 
with domain

Number of 
Proteins 

Correctly 
Predicted as
RNA-biding

Example of correctly predicted protein (host species) 
Prediction 
Accuracy 

(%) 

RRM 35  35

CUG triplet repeat RNA-binding protein 1 (Homo sapiens) 
ELAV-like protein 2 (Mus musculus) 
ELAV-like protein 4 (Homo sapiens, Rattus norvegicus) 
Heterogeneous nuclear ribonucleoprotein A1 (Mus musculus) 
Heterogeneous nuclear ribonucleoprotein A3 (Homo sapiens, Xenopus laevis) 
Heterogeneous nuclear ribonucleoprotein H (Homo sapiens) 
Matrin 3 (Rattus norvegicus) 
Nuclear polyadenylated RNA-binding protein NAB4 (Candida albicans) 
Polypyrimidine tract-binding protein 1 (Rattus norvegicus) 
RNA-binding protein FUS (Mus musculus) 
RNA-binding region containing protein 2 (Mus musculus) 
Splicing factor, arginine/serine-rich 4 (Mus musculus) 
Splicing factor, arginine/serine-rich 5 (Homo sapiens) 
Splicing factor U2AF 65 kDa subunit (Mus musculus, Caenorhabditis elegans) 

100% 

dsRM 16  16

ATP-dependent RNA helicase A (Bos taurus) 
Interleukin enhancer-binding factor 3 (Mus musculus, Rattus norvegicus) 
Ribonuclease III (Escherichia coli, Ralstonia solanacearum, Brucella melitensis, Salmonella typhi, 
Yersinia pestis, Rhizobium meliloti, Staphylococcus aureus (strain N315), Neisseria meningitidis 
(serogroup A), Neisseria meningitidis (serogroup B), Chlamydia muridarum, Helicobacter pylori J99) 

100% 
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SON protein (Mus musculus) 

KH 94  93

30S ribosomal protein S3 (Mycobacterium bovis, Escherichia coli, Mycoplasma pneumoniae, Buchnera 
aphidicola (subsp. Acyrthosiphon kondoi), Acholeplasma florum, Buchnera aphidicola (subsp. 
Acyrthosiphon pisum), Synechocystis sp. (strain PCC 6803), Thermus thermophilus, Phytoplasma sp. 
(strain STRAWB2), Mycoplasma capricolum, Acholeplasma sp. (strain ATCC J233), Fusobacterium 
nucleatum (subsp. nucleatum), etc.) 
A kinase anchor protein 1 (Homo sapiens, Mus musculus) 
GTP-binding protein era homolog (Streptococcus pyogenes (serotype M3), Streptococcus pneumoniae, 
Fusobacterium nucleatum (subsp. nucleatum), Clostridium perfringens, Anabaena sp. (strain PCC 
7120), Mycoplasma pulmonis, Staphylococcus aureus (strain Mu50 / ATCC 700699), Neisseria 
meningitidis (serogroup A), Neisseria meningitidis (serogroup B), Bacillus halodurans, Lactococcus 
lactis (subsp. lactis), Helicobacter pylori J99) 
Hypothetical UPF0109 protein TC0030 (Chlamydia muridarum) 
N utilization substance protein A homolog (Bacillus halodurans, Rickettsia conorii) 
Poly(rC)-binding protein 1 (Oryctolagus cuniculus) 
Poly(rC)-binding protein 2 (Homo sapiens) 
Poly(rC)-binding protein 3 (Mus musculus) 
Poly(rC)-binding protein 4 (Mus musculus) 
Polyribonucleotide nucleotidyltransferase (Bacillus subtilis, Buchnera aphidicola (subsp. Schizaphis 
graminum)) 
Probable exosome complex RNA-binding protein 1 (Methanosarcina mazei, Thermoplasma 
acidophilum, Pyrococcus abyssi) 
Heterogeneous nuclear ribonucleoprotein K (Oryctolagus cuniculus) 
Vigilin (Gallus gallus) 
Zipcode-binding protein 2 (Gallus gallus) 

98.9% 

S1 RNA 
binding 
domain 

10  10

30S ribosomal protein S1 (Chlamydia trachomatis, Chlamydia pneumoniae) 
Eukaryotic translation initiation factor 2 (Rattus norvegicus) 
N utilization substance protein A homolog (Buchnera aphidicola (subsp. Schizaphis graminum)) 
Probable translation initiation factor 2 alpha subunit (Methanopyrus kandleri, Pyrococcus furiosus, 
Sulfolobus tokodaii, Pyrococcus abyssi) 
Ribonuclease E (Buchnera aphidicola (subsp. Schizaphis graminum)) 

100% 
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4.2.2.3. Contribution of feature properties to the classification of 

RNA-binding proteins 

 

We choose a total of nine feature properties  for describing physicochemical 

characteristics of each protein, which have been routinely used in previous studies of 

proteins 14, 43, 47, 168, 182. However, not all feature vectors contribute equally to the 

classification of proteins, some have been found to play relatively more prominent role 

than others in specific aspects of proteins 47. It is therefore of interest to examine which 

feature properties play more prominent role in classification of RNA-binding proteins.  

The contribution of individual feature property to protein classification is investigated 

by separately conducting classification using each feature property. Our analysis on the 

classification of all RNA-binding proteins suggests that, in order of prominence, the 

amino acid composition, charge, polarity, hydrophobicity play more prominent role 

than other feature properties. Amino acid composition and hydrophobicity are 

important factors for the interaction of a protein with other biomolecules as well as for 

structural folding. On the other hand, charge and polarity is important for electrostatic 

interactions and hydrogen-bonding to RNA. As the backbone of RNA is charged, 

charge and polarity are expected to be particularly important feature properties for the 

binding of a protein with its RNA-substrate. A recent study of the dynamics of 

protein-RNA interfaces showed that actions condensed around RNA affect the binding 

of protein to RNA 207, which is indicative of the strong effect of charges and polarity. 
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4.3. Classification of Transporters (Paper III) 

Transporters play key roles in transporting cellular molecules across cell and cellular 

compartment boundaries, mediating the absorption and removal of various molecules, 

and regulating the concentration of metabolites and ionic species 208-210. Specific 

transporters have been explored as therapeutic targets 211-213 and a variety of 

transporters are responsible for the absorption, distribution and excretion of drugs 214, 

215. Functional assignment of transporters is important for facilitating functional study 

of genomes, for probing molecular mechanism of cellular processes and diseases, and 

for searching new therapeutic targets and pharmacologically relevant transporters.  

 

There are active and passive transporters. Active transporters couple solute transport to 

the input of energy and these can be divided into two classes: ion-coupled and 

ATP-dependent transporters. Ion-coupled transporters link uphill solute transport to 

downhill electrochemical ion gradients. ATP-dependent transporters are directly 

energized by the hydrolysis of ATP and they transport a heterogeneous set of substrates. 

Passive transporters include facilitated transporters and channels, which allow the 

diffusion of solutes across membranes. These transporters evolve from common 

themes into families of different architectures 208, 216, 217.  

 

Functional families of transporters are described by the transporter classification (TC) 

system (http://www-biology.ucsd.edu/msaier/transport/) based on their mode of 

transport, energy coupling mechanism, molecular phylogeny and substrate specificity 

217. In particular, transport mode and the energy coupling mechanism have been used as 

the primary basis for transporter family classification due to their relatively stable 

74 



Chapter 4 Classification of the functional classes of proteins based on primary sequence 

characteristics 217. Therefore, transporters in a TC family share common transport 

modes and mechanisms. In cases that the precise function of a transporter is unknown, 

prediction of its TC family provides useful hint about its broad transportation role, 

mode of action and substrate classes.  

 

TC families are classified at four levels (TC class, TC sub-class, TC family, and TC 

sub-family) as indicated by a specific TC number TC I.X.J.K.L. Here I=1, …, 9 

represents each of the 9 TC classes, X=A, B, C, D, E, … represents each of the TC 

sub-classes that belong to a TC class, J=1, … represents each of the TC families that 

belong to a TC sub-class, K=1, … represents each of the TC sub-families that belong to 

a TC family, and L=1, … represents individual transporters under a sub-family.  

So far, sequence alignment and clustering are used widely for predicting the TC family 

as well as the function of transporters 218, 219. Some transporters are known to have no or 

low homology to other proteins of known function 220-223. Substantial portions of 

transporters in different TC families have very low sequence identity to other family 

members. For instance, a member of the multidrug transporter family, bmr3, has only 

7% sequence identity and 17% similarity to another family member blt 223. A K+ 

channel, TASK-2, has 18-22% sequence identity to other members of the two pore 

domain K+ channel family such as TWIK-1, TREK-1, TASK-1, and TRAAK 224. Two 

members of the major facilitator family, GlpT and LacY, are 21% identical to each 

other 225. Thus the function of some of these transporters may be difficult to assign 

based solely on homology 16, 226, and methods that predict protein function without the 

use of sequence similarity are needed.  

Several methods have been developed for predicting protein function without sequence 
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alignment and clustering. Some of these explore structural features 10, interaction 

profiles 13, 14, and protein/gene fusion data 11, 12. Others conduct functional family 

assignment by using statistical learning methods including neural networks and SVM 31, 

34, 43, 45, 46. These methods have been tested by using a variety of proteins including 

enzymes, receptors and transmembrane proteins. While these methods have not been 

specifically tested for transporters, some of these methods are expected to be applicable 

to transporters. 

 

One approach for protein functional classification has shown useful capability for 

functional family assignment of distantly related proteins as well as homologous 

proteins at high accuracy rates 43, 227, 228. Some SVM systems have been developed to 

classify proteins into functional families defined from activities and physicochemical 

properties rather than sequence similarity 14, 31, 43, 45, 46. In training a SVM classification 

system, proteins represented by their sequence-derived physicochemical properties are 

projected onto a hyperspace where proteins in a family are separated from those outside 

the family by a hyperplane. By projecting a new sequence onto this hyperspace, the 

SVM system can determine whether the corresponding protein belongs to the family 

based on its location with respect to the hyperplane. To some extent, no sequence 

similarity is required in this process.  The overall accuracy of functional family 

prediction is 87%, based on the test of 34,582 proteins. The accuracy for the correct 

assignment of non-family-members is 97%, based on the test of 310,000 proteins 43, 45, 

46. Thus SVM appears to be a useful alternative approach for predicting the TC family 

of transporters irrespective of sequence similarity. 
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So far, SVM and other statistical learning methods have not been explored for 

predicting transporter families, due in large part to the limited information about 

transporters. The relevant data in the transporter databases 229, 230 has now reached to a 

level useful for using SVM to predict transporter families. A survey of the transporter 

databases 229, 230 finds that the number of known transporters in each of the 13 TC 

sub-classes and 8 TC families is no less than 80-100, which is  typically needed for 

properly training a SVM protein classification system 43. Thus, in this work, transporter 

family classification is conducted at the sub-class level for the 13 TC sub-classes and at 

the family level for the 8 TC families. 

 

4.3.1. Selection of transports and non-members of TC sub-classes and TC 
families 

The seed transporters for each of the 20 known TC sub-class are from the TCDB 

database 230. A BLAST search is conducted to scan the Swissprot database 231 for 

finding additional transporters in each sub-class. There is no seed transporter for the 

TC1.D, TC2.B  and TC9.C sub-classes, and the number of collected transporters in the 

TC3.B, TC3.C, TC5.A and TC5.B sub-classes are substantially less than the number of 

80-100 typically needed for properly training a SVM protein classification system 43. 

Moreover, there are 8 TC families found to have more than 80 transporters. Thus 13 TC 

sub-classes with a combined number of 14,987 transporters, and 8 TC families with a 

combined number of 2684 transporters are studied in this work. All distinct members in 

each sub-class are used to construct positive samples for training, testing and 

independent evaluation of the SVM classification system. 

 

The negative samples of each TC sub-class/family for training and testing our SVM 

77 



Chapter 4 Classification of the functional classes of proteins based on primary sequence 

classification systems refer to those proteins outside this sub-class/family which 

include both non-transporter proteins and transporters of other sub-classes and families. 

These negative samples are selected from seed proteins of the 7,316 curated protein 

families in the Pfam database 232 that have no protein as a member of that sub-class. 

Each negative set contains at least one randomly selected seed protein from each of the 

7,316 Pfam families. For the group of negative samples of a sub-class, distinct 

members in the other sub-classes are added to the group of each of the training, testing 

and independent evaluation set. It is expected that the number of negative samples in 

each of these groups may be higher than that of non-transporter proteins.  

 

The performance of SVM classification is further evaluated by using an independent 

evaluation set, which is composed of all of the proteins in each sub-class/family and 

those outside the sub-class/family that have not been used in the training and 

optimization the SVM system. No duplicate protein entry is used in the training, testing 

and independent evaluation set for each group. The number of positive and negative 

samples for each of the training, testing and independent evaluation set for each of the 

13 transporter sub-classes is given in Appendix A, as indicated in “Protein family” as 

transporters. 

4.3.2. Results and Discussion 

 

Statistics of the datasets and prediction results of each of the 13 TC sub-classes of 

transporters and those of the 8 TC families are given in Appendix Table A(as indicated 

in “Protein family” as transporters). The computed TP, TN, FP, FN, Qp and Qn and C 

for each TC sub-class and family by using the respective testing and independent 
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evaluation sets are also given respectively. The computed Qp,, Qn and C for the 13 TC 

sub-classes is in the range of 70.7% to 96.1%, 97.6% to 99.9% and 69.7% to 96.5% 

respectively, and those for the 8 TC families is in the range of 60.6%~97.1% and 

91.5%~99.4% respectively. The overall accuracies for the assignment of 4,351 and 770 

transporters into their respective TC sub-class and TC family are 83.4% and 88.0% 

respectively, and those for the correct assignment of 83,151 and 57, 951 non-members 

of TC sub-classes and families are 99.3% and 96.6% respectively. These accuracies are 

comparable to the overall accuracy of 86% for the SVM assignment of the enzymes 

classification previously in section 4.1. 

 

In order to evaluate the capability of SVM classification systems for distinguishing 

between transporters of a particular TC sub-class and transmembrane proteins outside 

that sub-class, all of the transmembrane proteins known to not belong to each of the 13 

investigated TC sub-classes are collected and used to test the corresponding SVM 

classifier. A total of 26,139 such transmembrane proteins are found from the SwissProt 

database231. The number of transmembrane proteins outside each of the 13 TC 

sub-classes and the SVM prediction results are given in Table 4-8. It is shown that 

90.4% to 99.6% of the transmembrane proteins outside each TC sub-class are correctly 

predicted to be non-members of that sub-class, suggesting that our SVM classification 

systems have certain level of capability for separating transporter members and 

transmembrane non-members of transporter families. 
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Table 4-8 Transmembrane proteins outside each of the TC families and SVM 
prediction results for these proteins. 

 

Prediction results 
Transporter sub-class 

Transmembrane 
proteins outside 
the sub-class 

Predicted as 
non-member

Predicted 
as member 

Prediction 
accuracy 

TC 1.A α-Type channels 25456 24599 857 96.6% 
TC 1.B β-Barrel porins 26011 25816 195 99.3% 
TC 1.C Pore-forming toxins 26061 23565 2496 90.4% 
TC 1.E Holins 26101 26001 100 99.6% 
TC 2.A Porters (uniporters, 
symporters, and antiporters) 25439 24321 1118 95.6% 

TC 2.C Ion gradient-driven 
energizers 26100 26049 51 99.8% 

TC 3.A Diphosphate bond 
hydrolysis-driven transporters  25559 23244 2315 90.9% 

TC 3.D Oxidoreduction-driven 
transporters 24266 23498 768 96.8% 

TC 3.E Light absorption-driven 
transporters 24929 24684 245 99.0% 

TC 4.A Phosphotransfer-driven 
group translocators 26062 25753 309 98.8% 

TC 8.A Auxiliary transport 
proteins 26053 25915 138 99.5% 

TC 9.A Transporters of unknown 
biochemical mechanism 26085 25647 438 98.3% 

TC 9.B Putative but 
uncharacterized transport 
proteins  

25815 24246 1569 93.9% 
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The prediction accuracy for the non-members of each TC sub-class/family appears to 

be higher than that for the transporters in the sub-class/family. It is likely resulting from 

the availability of a significantly more diverse set of non-transporter proteins than that 

of transporters, which enables the training of a system with higher capability for 

recognizing non-members of a TC sub-class or family. There are over 7,316 families of 

proteins Pfam database 232,  from which a diverse set of non-members for each TC 

sub-class or family can be generated.  

 

Examples of the predicted true positive, false negative, true negative and false positive 

protein sequences of each of the 13 sub-classes are given in Table 4-9.  Inspection of 

the false negative transporters and the false positive non-members of each sub-class 

show that a substantial percentage of these incorrectly predicted proteins are actually 

sequence fragment entries of the corresponding protein, which likely contributes to 

some of the prediction errors in this work.  
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Table 4-9 Examples of the predicted true positive (TP), true negative (TN), false 

positive (FP), false negative (FN) protein entries of different TC sub-classes. Only 

proteins in the independent evaluation sets are included in this Table. Host species of 

some protein sequences are not provided because the relevant information is not yet 

available in the protein sequence database. 

Protein class Prediction
category

Example of predicted proteins 

TP Cyclic-nucleotide-gated cation channel 
Calcium transporter CaT1 
Transient receptor potential cation channel protein 
P2X purinoceptor 1 
Glycine receptor alpha-1 chain precursor 
Glutamate-gated chloride channel 
Outwardly rectifying chloride channel 
CLC-Nt2 protein 
Urea transporter; Structural polyprotein P130 
Magnesium and cobalt transport protein corA 
VPU protein 

TN V1A arginine vasopressin receptor 
ATP-binding protein of ABC transporter 
Chorionic gonadotropin beta subunit (Fragment) 
16 kDa heat shock protein A 
Methyl-accepting chemotaxis protein 
Ribulose-1,5-bisphosphate carboxylase 
alsyntenin-1 precursor 
DsRNA-binding protein 
NADH gehydrogenase 8 subunit (Fragment) 

TC 1.A α-Type 
channels 

FP Probable G-protein-coupled receptor Mth-like 10 
precursor 
CG18678 protein 
Envelope glycoprotein (Fragment) 
Sulfonylurea receptor-1 (Fragment) 
Hfq protein; Short transient receptor potential channel 
2  
Lantibiotic epidermin precursor 
Neuromedin U-25 
P0492F05.25 protein 
Phosphatidylserine synthase-2 
Dentatorubro-pallidoluysian atrophy protein 
(Fragment) 
RNA replicase beta chain (Fragment) 
C14orf1-like protein  
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FN PBCV-1 K+ ion channel protein 
Melastatin 1 
Channel protein (Hypothetical protein) 
Calcium-activated chloride channel protein 2 
Non-selective cation channel 
NADPH thyroid oxidase 2 
BspA protein precursor 
YKUT protein. 

TP Outer membrane protein C precursor 
Sucrose porin precursor 
Voltage-dependent anion-selective channel protein 3 
Long-chain fatty acid transport protein precursor 
Hemoglobin receptor 
Lactoferrin-binding protein B precursor  
Cation efflux system protein cusC precursor 
Porin B precursor 

TN GRH receptor-2 
Putative pheromone receptor 
ATPase alpha subunit (Fragment) 
Translation elongation factor 1-alpha (Fragment) 
Chaperone protein dnaK 
Decoy TNF receptor 
ADP-ribosylation factor-like protein 
Cytochrome b (Fragment) 
Cytochrome b. 

FP R09B5.5 protein. 
Hypothetical 21.7 kDa protein. 
Photosystem II reaction center X protein. 
PAR-1a protein 
Putative FKBP-type peptidyl-prolyl cis-trans 
isomerase 
Replication-related protein. 
HrpF. 
Putative nitrate-induced protein. 
Homeodomain protein vaamana. 
Probable soluble cytochrome b562 2 precursor 

TC 1.B β-Barrel porins 

FN GnRH receptor-2. 
Putative pheromone receptor. 
ATPase alpha subunit (Fragment). 
Ribulose 1,5-bisphosphate carboxylase large subunit 
(fagment). 
2010109I03Rik protein. 
Hypothetical protein All2748. 
Blastomere-cadherin precursor 
Cytochrome c. 
Ribonuclease III  

TC 1.C Pore-forming 
toxins 

TP Alpha-toxin. 
Bifunctional hemolysin-adenylate cyclase precursor  
Plantaricin S beta protein precursor. 
Mastoparan B. 
Crabrolin. 
Myeloid cathelicidin 1 precursor. 
Defensin precursor. 
Cytotoxin L 
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TN Re6 receptor long splice variant. 
Cell division protein FTSE 
ATP synthase beta subunit (Fragment). 
Translation elongation factor 1 alpha (Fragment). 
Methyl-accepting chemotaxis protein. 
Tumor necrosis factor receptor superfamily member 
11B precursor 
Matrix metalloproteinase 9 precursor 
Hemoglobin alpha chain. 

FP NAD-glycohydrolase. 
Apolipophorin-III precursor  
Photosystem I reaction centre subunit XII precursor. 
Steroid receptor coactivator 1a 
Bll2849 protein. 
Probable spore cortex-lytic enzyme. 
Hypothetical protein NMA0089. 

FN Enterocin P precursor. 
Myeloid secondary granule protein. 
Countin. 
Lactococcin 972 precursor. 
Hemolysin BL lytic component L2. 
Beta2-toxin. 

TP Lysis protein S. 
Extracellular secretory protein. 
Holin. 
LrgA family protein. 

TN Long-wavelength opsin (Fragment). 
G-protein-coupled receptor Mth2 precursor  
Hypothetical protein CBU1189. 
ABC transporter ATP-binding protein-oligopeptide 
transport. 
ATP synthase beta subunit (Fragment). 
Glycoprotein hormone beta 5 precursor  
CG14207-PB. 
NADP-dependent malate dehydrogenase (Fragment). 
GRAAL2 protein precursor. 
LDL receptor-related protein 6. 

FP NADH dehydrogenase. 
YVLD. 
Cytochrome c oxidase, cbb3-type, CcoQ subunit. 
Probable transmembrane protein. 

TC 1.E Holins 

FN Long-wavelength opsin (Fragment). 
G-protein-coupled receptor Mth2 precursor  
Hypothetical protein CBU1189. 
ABC transporter ATP-binding protein-oligopeptide 
transport. 
ATP synthase beta subunit (Fragment). 
Glycoprotein hormone beta 5 precursor  
CG14207-PB. 
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TP Hexose transporter 1. 
Metabolite transport protein. 
Integral membrane protein. 
Inorganic phosphate transporter 1. 
Organic cation transporter. 
Feline leukemia virus subgroup C receptor FLVCR. 
Aromatic amino acid and leucine permease. 

TN Orphan G protein-coupled receptor Ren 1. 
Glucagon receptor. 
Thyrotropin beta subunit precursor. 
Elongation factor 1a (Fragment). 
U-plasminogen activator receptor form 2-human 
(Fragment). 
Actin I. 
At2g14250 protein. 

FP Glutamate receptor 3.1 precursor  
NADH-ubiquinone oxidoreductase chain 1  
Manganese transport system membrane protein mntC. 
Iron ABC transporter, permease protein. 
NADH dehydrogenase subunit 4. 
Pollen coat oleosin. 
G-protein coupled receptor GPR110. 

TC 2.A Porters 
(uniporters, 
symporters, and 
antiporters) 

FN Carboxypeptidase II (Fragment). 
Glucose uptake protein. 
Lysine and histidine specific transporter. 
Sodium proton exchanger NHX1 (Fragment). 
KtrB protein. 
Purine nucleoside permease. 
MNHG NA+/H+ antiporter subunit 
Bilitranslocase. 
Threonine export carrier. 

TP TonB protein 
Biopolymer transport exbB protein 
TolQ protein 
TolR protein 

TN Olfactory receptor-like protein 42-2 (Fragment). 
Metabotropic glutamate receptor 7 variant 3. 
Tat-binding homolog 7, AAA ATPase family protein. 
Transcription termination factor Rho. 
Thyroptin beta chain (Fragment). 
C901 protein. 
Phospholipase A2-3 (Fragment). 
Coenzyme A disulfide reductase. 
Ras-related protein Rab-12 (Fragment). 

TC 2.C Ion 
gradient-driven 
energizers 

FP TAU-1a (Fragment). 
S164 (Fragment). 
F22F1.3 protein. 
Outer-membrane lipoproteins carrier protein precursor. 
CG13097 protein (SD02943p). 
46-kDa surface lipoprotein (Fragment). 
Hypothetical protein XAC3753. 
Complexin 2 (Synaphin 1) (921-L). 
Conserved hypothetical protein. 
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FN Peptidoglycan-associated lipoprotein [Precursor] 
TolA protein 
TolB protein precursor. 

TP ABC transporter ATP-binding subunit. 
Bacitracin export permease protein bceB. 
P-type ATPase. 
Copper-transporting ATPase, P-type  
Plasma membrane calcium-transporting ATPase 1  

TN Olfactory receptor (Fragment). 
Bovine growth hormone-releasing hormone receptor 
(Fragment). 
Seven transmembrane helix receptor. 
Gonadotropin beta-II chain precursor  
Atonal-like protein 3. 
Inhibin alpha subunit (Fragment). 
UL144 protein. 
Ras-like small monomeric GTP-binding protein. 

FP Chemotaxis sensory transducer protein. 
Putative signal peptidase IB. 
Hydrogenase expression/formation protein HypE 
(Fragment). 
Major outer membrane protein OmpA. 
PugilistDominant (Fragment). 
Ribosomal small subunit pseudouridine synthase A. 
Inward rectifier potassium channel 4  
NADH dehydrogenase subunit 4  (Fragment). 

TC 3.A Diphosphate 
bond hydrolysis-driven 
transporters 

FN DNA translocase ftsK 
Tra protein 
Gene I protein 
ComG operon protein 1 
Putative mitochondrial F0-ATPase, mammalian 
subunit b 

TP Cytochrome c oxidase polypeptide IVB  
Ubiquinol oxidase polypeptide I  
Cytochrome O ubiquinol oxidase subunit III  
Protoheme IX farnesyltransferase  

TN SH3P13S. 
Growth differentiation factor 9B (Fragment). 
D13L protein. 
0610005K03Rik protein. 
Actin (Fragment). 
Similar to ankyrin-like protein 
CG7802 protein  
Aspartic protease Bla g 2 precursor  
Cyclic nucleotide-gated channel 2b. 

TC 3. D 
Oxidoreduction-driven 
transporters 

FP Flagella-related protein G. 
Hypothetical protein VCA0629. 
Sarcolipin. 
Hypothetical protein. 
Protein pufQ. 
Putative membrane protein MMPS2. 
Chromosome IV reading frame ORF YDL072C. 
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FN NADH-quinone oxidoreductase chain 2  
Mbh12 membrane bound hydrogenase alpha  
Hypothetical protein PF1431. 
Protoheme IX farnesyltransferase  
Ubiquinol oxidase polypeptide II precursor  

TP Cytochrome b.  
Photosystem Q(B) protein.  
Cytochrome B6-F complex iron-sulfur subunit 
Photosystem II 44 kDa reaction center protein  

TN G protein-coupled receptor 119  
Glucagon receptor. 
Metabotropic glutamate receptor 2 precursor  
ClpB protein. 
ATP synthase beta subunit (Fragment). 
Gonadotropin beta-II chain precursor  
Sugar transport related protein. 
Coagulation factor XIII, beta subunit. 

FP Cytochrome oxidase 1 (Cox1 protein) (Fragment). 
Beta polypeptide. 
NAS-20 protein (Fragment). 
Glycine betaine transporter (Fragment). 
Lysosomal-associated transmembrane protein 4A  
Conserved hypothetical protein. 

TC 3.E Light 
absorption-driven 
transporters 
 

FN Photosystem II 44 kDa reaction center protein 
Photosystem Q(B) protein 
Cytochrome b6-f complex subunit 4 

TP PTS system, glucose-specific IIBC component  
PTS system, fructose-specific IIBC component  
PTS system, mannitol-specific IIABC component  
PTS system, lactose-specific IIA component  
PTS system, N,N'-diacetylchitobiose-specific IIC 
component  
AgaC. 

TN Opsin Rh6  
Bride of sevenless protein precursor. 
ATP-dependent Clp protease subunit. 
Hemin transport system ATP-binding protein hmuV. 
FSH beta-subunit. 
Latent transforming growth factor beta binding protein 
3(Fragment). 

TC 4.A 
Phosphotransfer-driven 
group translocators 
 

FP PsbA protein. 
Hypothetical protein SAV2534  
Ammonia permease. 
DNA-directed RNA polymerase subunit K (EC 
2.7.7.6). 
Transporter. 
Integral membrane protein. 
Carbon starvation protein. 
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FN PtsC1 protein. 
PTS system, lichenan-specific IIB component  
Putative phosphotransferase D-arabitol specific 
component IIC (Fragment). 
AgaW. 
Putative PTS system, glucitol/sorbitol-specific enzyme 
II  

TP Tyrosine-protein kinase etk  
Voltage-gated potassium channel beta-1 subunit  
Large conductance calcium-dependent potassium ion 
channel beta 4subunit. 
Sodium channel beta-1 subunit precursor. 
Phosphocarrier protein HPr  

TN Olfactory receptor MOR256-1  
Latrophilin 2 splice variant bbabe. 
Calcium-sensing receptor related protein 4 (Fragment). 
ATP-dependent Clp protease ATP-binding subunit 
clpX. 
ATP synthase beta subunit (Fragment). 
Luteinizing hormone beta subunit. 
Ovomucoid (Fragment). 
Hepatocyte growth factor precursor  
Alpha 3B chain of laminin-5 (Fragment). 

FP Ebh protein. 
HapP1 protein precursor. 
Similarity to late embryogenesis abundant protein. 
Prospero-related homeobox 1 (Fragment). 
DNA helicase-primase complex component. 
Protein F14. 
Conserved hypothetical protein. 

TC 8.A Auxiliary 
transport proteins 

FN Chromosome XII COSMID 9449. 
Potassium voltage-gated channel subfamily E member 
1  
Cardiac phospholamban  
Transport accessory protein. 
Pediocin PA-1 biosynthesis protein pedC  

TP MerC. 
Peroxisomal targeting signal 1 receptor. 
IRON(II) transport protein  
High-affinity iron permease CaFTR2. 
Lysosome-associated membrane glycoprotein 2 
precursor  
MgtE. 
MG2+ transporter. 

TC 9.A Transporters of 
unknown biochemical 
mechanism 

TN Muscarinic acetylcholine receptor M1. 
Latrophilin 3 splice variant bbbh. 
Nuclear valosin-containing protein-like  
ABC transporter (Fragment). 
ATP synthase beta chain  
Thyrotropin beta subunit. 
Fibrillin 1 precursor  
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FP NADH dehydrogenase subunit I  
Phosphoenolpyruvate carboxylase, isoform 1 
(Fragment). 
MHBs protein 
DNA-repair protein complementing XP-G cells 
homolog  
Calsequestrin 1. 
Lysosomal amino acid transporter 1. 

FN Ubiquitin-conjugating enzyme E2-21 kDa  
PbrT protein. 
ComC. 
Putative mercuric ion binding protein. 
Probable tryptophan transport protein. 

TP Galectin-9. 
Cytochrome c-type biogenesis protein ccl1. 
Long-chain-fatty-acid--CoA ligase. 
Putative chloroquine resistance transporter. 
Bax inhibitor-1  
Magnesium and cobalt efflux protein corC. 

TN Olfactory receptor MOR114-5  
Bovine growth hormone-releasing hormone receptor 
(Fragment). 
Gamma-aminobutyric acid type B receptor, subunit 1 
precursor  
Endopeptidase Clp ATP-binding chain B. 
ATP synthase alpha chain, sodium ion specific  
Thyroptin beta chain (Fragment). 
Fibrillin-1 (Fragment). 

FP Rainbow trout DNA for mature peptide, exon2 
(Fragment). 
Annexin max4. 
Protein export. 
Vng1454c. 
Similar to C-14 sterol reductase. 
19kD alpha zein B5 (Fragment). 

TC 9.B Putative but 
uncharacterized 
transport proteins 

FN Very-long-chain acyl-CoA synthetase 
Probable crotonobetaine/carnitine-CoA ligase 
Retrograde regulation protein 3 
Beta-(1-3)-glucosyl transferase. 
Conserved hypothetical protein. 
Hemolysin-related protein, containing CBS domain. 
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Because the number of transporters is significantly less than that of non-members, there 

is an unbalance between the positive and negative training dataset for each sub-class 

and family. SVM based on an imbalanced dataset tends to generate a hyper-plane closer 

to the side with smaller number of samples 202, which can lead to a lower prediction 

accuracy for these samples compared to those on the other side of hyper-plane. This 

partly explains why the accuracy for assigning the sub-class of transporters is lower 

than that for the non-members.  It is however inappropriate to simply reduce the size 

of non-members of each sub-class to artificially match that of transporters in the same 

sub-class, since this compromises the diversity needed to fully represent all 

non-members. Computational methods for re-adjusting biased shift of the hyper-plane 

are being developed and evaluated 233. These methods, when sufficiently developed, 

may help improving SVM prediction accuracy in this and other cases involving 

unbalanced data. 
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5. Prediction of the functional class of novel 
proteins - Specific Case Studies 

The work in this chapter has been published in: 

IV) Predicting Functional Family of Novel Enzymes Irrespective of Sequence 
Similarity: A Statistical Learning Approach. L.Y.Han, C.Z.Cai, Z.L.Ji, 
Z.W.Cao,J.Cui, Y.Z.Chen Nucleic Acids Res.32(21): 6437-6444(2004). 

V) Prediction of Functional Class of Novel Viral Proteins by a Statistical Learning 
Method Irrespective of Sequence Similarity. L.Y.Han, C.Z Cai, Z. L. Ji, Y.Z. 
Chen. Virology 331(1):136-143 (2005). 

VI) Prediction of Functional Class of Novel Plant Proteins by a Statistical Learning 
Method. L. Y. Han, C. J. Zheng, H. H. Lin, J. Cui, H. Li, H. L. Zhang, Z. Q. 
Tang, and Y. Z. Chen, New Phytologist. 168:109-121(2005) 

VII) Prediction of Functional Class of Novel Bacterial Proteins without the Use of 
Sequence Similarity by a Statistical Learning Method.J. Cui, L. Y. Han, C. Z. 
Cai, C.J.Zheng, Z. L. Ji, and Y. Z. Chen.J. Mol. Microbiol. Biotech. 9 (2): 
86-100 (2005) 

 

A fundamental understanding of how biological systems work requires knowledge of 

protein functions as well as protein interactions. Finding clues of functions is becoming 

an increasingly important means for better understanding in biological process. For 

example, exploring functions of certain novel sequences of some bacterial species 

could help elucidate their pathogenesis potential and reveal novel pathways for drug 

intervention; large DNA viruses such as poxviruses encode for a variety of proteins that 

can specifically manipulate the function of host immune factors/messengers, e.g. 

interferon, interleukins and chemokines. Hints of these novel viral proteins functions 

are very important for interpreting how the viruses use to interact with their hosts and 

for searching molecular targets of antiviral therapeutics. 

The gap between the large amounts of sequences information resulting from large- 

scale genome sequencing projects and their function characterization is continuously 

increasing. In the completely sequenced genome of Arabidopsis, the function of 30% of 
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the putative protein-coding open reading frames (ORFs) is unknown 234, 235. Similar 

percentage of unknown ORFs is expected in other plant genomes. The function of a 

substantial percentage (17-20%) of the putative protein-coding open reading frames 

(ORFs) in many bacterial genomes is unknown 236, 237. There is also a substantial 

percentage of the unknown ORFs in the recently determined genomes of Fer-de-lance 

virus238, Grapevine fleck virus239, Indian citrus ringspot virus240, and SARS 

coronavirus 241 etc. The same problem arisen when we shift the visual angle from the 

aspect of taxonomy to the aspect of the protein functional group. There is a large 

amount of proteins that could perform a specific function or could play a certain 

biological role haven’t been discovered. Thus, increasing efforts have been directed to 

development of methods for probing protein functions. However, as the sequence of 

these ORFs mentioned above has no significant similarity to those of known proteins, 

their functions are difficult to formulate by using sequence alignment and clustering 

methods. In addition, approaches building upon direct sequence comparisons were 

lacking of sensitivity and were even unable to identify those novel proteins with remote 

homologous. 

Since our approach for protein function prediction is based on the statistical learning 

from the physico-chemical properties derived from the primary sequence instead of the 

sequence comparison, it is possible to predict protein functional class irrespective of 

sequence similarities. In order to extensively evaluate the potential and usefulness of 

the protein functional class prediction system ‘SVMProt’ developed in this study, novel 

proteins that are distinctly related to other known functional proteins, diversely covered 

novel enzymes, novel viral ORFs, novel bacterial ORFs, as well as novel protein in 

plants are selected to examine the usefulness of our prediction system.  

 

92 



Chapter 5 Prediction of the functional class of novel proteins - Specific Case Studies 

5.1. Prediction of Functional Family of Novel Enzymes 
(Paper IV) 

Enzymes are proteins that act as catalysts that could affect the rate of chemical 

reactions. As Enzymes play a central role in every aspect of life involves in chemical 

reactions, as well as they provided a means for regulating the reactions in the metabolic 

pathways of the body242, the knowledge on enzymes is highly in demand for facilitating 

the understanding of biological processes.  

Enzymes have been systematically classified by the International Commission on 

Enzymes 178 into six major groups: oxidoreductases, transferases, hydrolases, lyases, 

isomerases, and ligases. These six major groups are further subdivided according to the 

more specific type of reactions that these enzymes involve. By classifying a protein into 

a specific enzyme family, one can get the hints of the enzyme function as well as the 

type of reactions that the enzyme may catalyze.  

Large amount of proteins that perform an enzymatic function have not been discovered. 

Thus, it is essential to interpret biological process at a deep level, especially when we 

consider discovering or even developing new therapeutic strategies. As mentioned 

previously, the function of an enzyme that has low sequence similarities of known 

function is difficult to assign based on their sequence similarity. The same problem 

may arise for homologous enzymes with different functions. In order to evaluate the 

capability of our developed prediction system for assignment of distantly related 

enzymes and homologous enzymes with different functions, two different groups of 

enzymes were tested for their functional class assignment.  

5.1.1. Methods 

In this work, two groups of enzymes, obtained from protein databases and literatures 

and subsequently verified by PSI-BLAST38, are used to assess the capability of SVM 
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for predicting the functional family of novel enzymes.  

One group includes enzymes that are without a homolog in protein database based on 

PSI-BLAST search of these databases. A similarity threshold E-value of 0.05 is used 

for protein sequence similarity searching. Those novel enzymes are firstly searched 

from the Swiss-Prot database 180 by using the key word “novel”, “distinct”, or 

“unrelated” combined with “enzyme”. The next step is to eliminate those with at least 

one homolog of known function (except for hypothetical proteins) by conducting a 

PSI-BLAST38 search against the NR databases that include all non-redundant GenBank, 

CDS translations, PDB, SwissProt, PIR, and PRF databases. This ensures that only 

those truly having no homolog in protein databases are selected. While the selected 

enzymes from this process are without a homolog, their function has been determined 

experimentally and these were reported in the literature and subsequently described in 

the Swiss-Prot database. The last step is to remove the redundancy. 

The second group contains pairs of homologous enzymes of different families. A low 

similarity E-value threshold of 10-6 is used for selecting these enzyme pairs to ensure 

the high sequence similarities. In a hypothetical situation that one enzyme in a pair of 

homologous enzymes of different families is newly discovered and the other is the only 

known protein of similar sequence, the function of the first enzyme can be incorrectly 

assigned to that of the second enzyme by using sequence similarity methods. Thus, it is 

of interest to examine to what extent SVM can be used as an alternative approach for 

facilitating functional assignment for these enzymes. These enzymes are further 

checked to remove the redundancy. 

5.1.2. Results and Discussion 

As shown in Table 5-1, 12 enzymes without a homolog in the NR databases (group NR) 
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and additional 38 enzymes without a homolog in the SwissProt database (group SP) are 

selected from the process introduced in 5.1.1 methods section. None of them is in the 

SVM training sets. SVMProt correctly assigns 8 out of 12 (67%) enzymes in the group 

“NR” and 28 out of 38 (73.7%) enzymes in the group “SP” to the respective family. The 

overall accuracy is 72%, which is comparable to the average sensitivity for the enzyme 

families, and it is consistent with the sequence-similarity-independent nature of SVM 

functional assignment.  

These 8 pairs of homologous enzymes of different families from previous publications 

45, 243 that satisfy the low E-value criterion, which together with SVMProt predicted top 

family for each enzyme are given in Table 5-2.  It is found that 5 or 62% of these 

enzyme pairs are correctly assigned by SVMProt, such accuracy is comparable to the 

average sensitivity for the enzyme families and indicative of the 

sequence-similarity-independent nature of SVM functional assignment. 

These results suggest that our prediction system has the capability for functional family 

assignment of novel enzymes without any sequence similarities in protein database, 

and for distinguishing homologous enzymes of different functions. The overall 

accuracy of SVM prediction system is not yet at the same level of that of sequence 

alignment for homologous proteins. One reason is the imbalance between the number 

of positive and negative samples. The total number of distinct enzymes in some 

families is less than 200, which is significantly smaller than that of a few thousand 

representative proteins used as the negative samples of the respective family. Such a 

large data imbalance is known to affect the accuracy of a SVM classification system 

and methods for solving these problems are being developed 233. It is likely that not all 

possible types of proteins, particularly those of distantly related members, are 

adequately represented in some families. This can be improved along with the 
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availability of more protein data. Not all distantly related proteins from one functional 

families have similar structural and chemical features due to the flexibility at the active 

site 26. These improvements will enable the development of SVM into a useful tool for 

facilitating functional study of novel proteins.  
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Table 5-1 List of enzymes without a homolog in the NR and SwissProt databases and 
the results of SVM functional family assignment. The symbol +, *, and – represent 
the cases that the predicted family with highest ranking, one of the predicted families, 
and none of the predicted families matches the enzyme function respectively. 

 
Enzyme (EC 

number)[SwissProt 
Accession number] 

Database 
Containing  

No Homolog

SVM assigned functional family(probability of 
correct prediction) 

Assignment 
Status 

Thiocyanate hydrolase 
beta subunit (EC 3.5.5.8) 
[O66186]. 

NR 
EC 3.5 Hydrolase of non-Peptide Carbon-Nitrogen 
Bonds (98.9%) 
EC 2.6 Transferases of Nitrogenous Groups (62.2%) 

+ 

Potential cysteine 
protease avirulence 
protein avrPpiC2 (EC 
3.4.22.-) [Q9F3T4]. 

NR 

EC 4.2 Carbon-Oxygen Lyase (93.6%) 
EC 2.3 Acyltransferase  (83.9%) 
EC 4.1 Carbon-Carbon Lyase (71.3%) 
Outer membrane (58.6%) 

- 

Extracellular 
phospholipase (EC 
3.1.1.5) [P82476] 

NR EC 3.1 Hydrolase of Ester Bonds (98.7%) + 

Cytochrome c oxidase 
polypeptide IV, 
mitochondrial precursor 
(EC 1.9.3.1) [P30815]. 

NR EC 1.9 Oxidoreductase of a heme group of donors 
(99.0%) + 

Cytochrome c oxidase 
polypeptide VI (EC 
1.9.3.1) [P26310]. 

NR 

EC 1.9 Oxidoreductase of a heme group of donors 
(98.4%) 
Transmembrane (98.3%) 
EC 3.1 Hydrolase of Ester Bonds  (62.2%) 

+ 

Alginate lyase precursor  
(EC4.2.2.3)  [P39049]. NR 

Transmembrane (65.4%) 
Outer membrane (58.6%) 
EC 2.1 Transferase of One-Carbon Groups (58.6%) 

- 

DNA 
alpha-glucosyltransferas
e  (EC 2.4.1.26) 
[P04519] 

NR 
EC 2.4 Glycosyltransferase (80.4%); 
EC 2.7 Transferase of Phosphorus-Containing 
Groups (68.5%) 

+ 

Endonuclease CviAII 
(EC 3.1.21.4 [P31117] NR EC 3.1 Hydrolase of Ester Bonds (99.0%) + 

Type II restriction 
enzyme CviJI (EC 
3.1.21.4) [P52283] 

NR 
EC 3.1 Hydrolase of Ester Bonds (99.0%);  
rRNA-binding Proteins (98.8%) ; 
EC 3.4 Peptidase (68.5%) 

+ 

DNA-directed RNA 
polymerase, subunit 10 
homolog (EC 2.7.7.6) 
[P42488] 

NR 

EC 2.7 Transferase of Phosphorus-Containing Groups 
(99.0%) 
7 transmembrane receptor metabotropic glutamate 
family (58.6%)  

+ 

Endonuclease IV (EC 
3.1.21.-) [P39250] NR No function predicted - 

Beta-agarase precursor  
(EC3.2.1.81) [P13734]. NR EC 4.1 Carbon-Carbon Lyase (96.7%) 

EC 2.4 Glycosyltransferase (71.3%) - 

Phenylacetaldoxime 
dehydratase (EC 4.2.1.-) 
[P82604]. 

SwissProt 

Transmembrane (98.2%) 
EC 3.4 Peptidase (96.4%) 
EC 3.3 Hydrolase of Ether Bonds (80.4%) 
EC 2.7 Transferase of Phosphorus-Containing 
Groups (73.8%) 

- 

ATP synthase H chain, 
mitochondrial precursor  
(EC3.6.3.14) [ Q12349]. 

SwissProt EC 3.6 Hydrolase of Acid Anhydrides (99.0%) 
RNA-binding Protein (58.6%) + 
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Peptide-N(4)-(N-acetyl-b
eta-D-glucosaminyl)aspa
ragine amidase F 
precursor  (EC 
3.5.1.52) [P21163] 

SwissProt 
EC 3.5 Hydrolase of non-Peptide Carbon-Nitrogen 
Bonds (99.0%) 
Beta-Barrel porin (58.6%) 

+ 

S-adenosyl-L-methionin
e hydrolase (EC 3.3.1.2) 
[P07693] 

SwissProt 

EC 3.3 Hydrolase of Ether Bonds (99.0%) 
EC 2.7 Transferase of Phosphorus-Containing 
Groups (71.3%) 
DNA-binding Protein (65.4%) 

+ 

Hypothetical 52.8 kDa 
protein in VPS15-YMC2 
intergenic region .(EC 
3.1.22.-) [P38257] 

SwissProt DNA-binding Protein (89.3%) 
Outer membrane (58.6%) - 

Hypothetical protein 
BBB03 (EC3.1.22.-) 
[O50979]. 

SwissProt 

EC 2.7 Transferase of Phosphorus-Containing 
Groups (88.1%) 
EC 3.4 Peptidase (86.8%) 
EC 2.3 Acyltransferase (71.3%) 
EC 4.1 Carbon-Carbon Lyase (65.4%) 

- 

Telomere elongation 
protein   (EC2.7.7.-)  
[P17214]. 

SwissProt 
EC 2.7 Transferase of Phosphorus-Containing 
Groups (99.1%) 
DNA-binding Protein (78.4%) 

+ 

Fucose-1-phosphate 
guanylyltransferase  
(EC 2.7.7.30) [O14772] 

SwissProt 

EC 2.7 Transferase of Phosphorus-Containing 
Groups (99.1%) 
7 transmembrane receptor metabotropic glutamate 
family (58.6%) 

+ 

DNA-directed RNA 
polymerase I 14 kDa 
polypeptide   (EC 
2.7.7.6) [P50106]. 

SwissProt 

EC 2.7 Transferase of Phosphorus-Containing 
Groups (99%) 
DNA-binding Protein (62.2%) 
Beta-Barrel porin (58.6%) 
EC 3.4 Peptidase (58.6%) 

+ 

DNA polymerase III, 
theta subunit (EC 
2.7.7.7) [P28689]. 

SwissProt 
EC 2.7 Transferase of Phosphorus-Containing 
Groups (99.0%) 
EC 4.2 Carbon-Oxygen Lyase (58.6%) 

+ 

Cytochrome c oxidase 
polypeptide IV (EC 
1.9.3.1) [P77921] 

SwissProt 

EC 1.9 Oxidoreductase of a heme group of donors  
(97.0%) 
Envelope protein (58.6%) 
Transmembrane (58.6%) 

+ 

Cytochrome c oxidase 
polypeptide VII (EC 
1.9.3.1) [P10174]. 

SwissProt 
EC 1.9 Oxidoreductase of a heme group of donors  
(98.3%) 
Transmembrane (58.6%) 

+ 

Cytochrome c oxidase 
polypeptide VIII, 
mitochondrial precursor 
(EC 1.9.3.1) [P04039]. 

SwissProt 

EC 1.9 Oxidoreductase of a heme group of donors 
(99.0%) 
Transmembrane (58.6%) 
RNA-binding Protein (58.6%) 

+ 

Cytochrome c oxidase 
polypeptide VIIA 
precursor (EC1.9.3.1) 
[P07255]. 

SwissProt 

EC 1.9 Oxidoreductase of a heme group of donors 
(97.8%) 
Transmembrane (93.8%) 
EC 1.10 Oxidoreductase of diphenols and related 
substances as donors (58.6%) 
Alpha-Type channel (58.6%) 

+ 

Heme-copper oxidase 
subunit IV (EC 1.9.3.-) 
[Q9YDX4]. 

SwissProt 
EC 1.9 Oxidoreductase of a heme group of donors 
(99.0%)  
Transmembrane (99.0%) 

+ 

Aminoglycoside 
2'-N-acetyltransferase 
(EC 2.3.1.-) [P95219] 

SwissProt 
EC 2.7 Transferase of Phosphorus-Containing 
Groups (78.4%) 
EC 4.2 Carbon-Oxygen Lyase (58.6%) 

- 

Glycosyl transferase alg8 
(EC2.4.1.-) [Q887P9]. SwissProt Transmembrane (99.0%) 

EC 2.4 Glycosyltransferase (98.6%) * 
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Beta-agarase B  (EC 
3.2.1.81) [P48840]. SwissProt Outer membrane (58.6%) 

Beta-Barrel porin (58.6%) - 

CM (EC 5.4.99.5)  
[P19080] SwissProt 

EC 5.4. Intramolecular Transferase (99.0%) 
EC 4.2. Carbon-Oxygen Lyase (58.6%) 
Outer membrane (58.6%) 

+ 

DNA 
beta-glucosyltransferase  
(EC 2.4.1.27) [P04547] 

SwissProt 
EC 2.4 Glycosyltransferases (95.7%); 
EC 2.5 Transferase of Alkyl or Aryl Groups, Other 
than Methyl Groups (80.4%) 

+ 

dNMPkinase (EC 
2.7.4.13) [P04531] SwissProt 

EC 2.7 Transferase of Phosphorus-Containing Groups 
(99.0%);  
EC 2.4 Glycosyltransferase (96.4%);  
EC 1.1 Oxidoreductase of the CH-OH group of 
donors (71.3%)  

+ 

Endonuclease II (EC 
3.1.21.1) [P07059] SwissProt EC 3.1 Hydrolase of Ester Bonds (99.0%) + 

Endonuclease V (EC 
3.1.25.1) [P04418] SwissProt EC 3.1 Hydrolase of Ester Bonds (99.0%) + 

Exonuclease (EC 
3.1.11.3) [P03697] SwissProt 

EC 3.1 Hydrolase of Ester Bonds (99.0%);  
EC 4.1 Carbon-Carbon Lyases (88.1%);  
EC 2.7 Transferase of Phosphorus-Containing Groups 
(68.5%);  
EC 1.1 Oxidoreductase of the CH-OH group of 
donors (58.6%) 

+ 

Ribonuclease (EC 
3.1.-.-)[P13312] SwissProt EC 3.1 Hydrolase of Ester Bonds (99.0%) + 

Intron-associated 
endonuclease 1 (EC 
3.1.-.-) [P13299] 

SwissProt EC 3.1 Hydrolase of Ester Bonds (99.0%);  
DNA-binding Protein (83.9%) + 

Intron-associated 
endonuclease 2 (EC 
3.1.-.-) [P07072] 

SwissProt EC 3.1 Hydrolase of Ester Bonds (99.0%) + 

Putative adenine-specific 
methylase (EC 2.1.1.72) 
[P51715] 

SwissProt 
EC 2.1 Transferase of One-Carbon Groups (99.0%) 
Outer membrane (58.6%) 
mRNA-binding Protein (58.6%) 

+ 

Protein kinase (EC 
2.7.1.37) [P00513] SwissProt EC 2.7 Transferase of Phosphorus-Containing 

Groups (99.0 %) + 

Slt35 (EC 3.2.1.-)  
[P41052] SwissProt 

Outer membrane (99.0%) 
EC 1.1. Oxidoreductase acting on the CH-OH group 
of donors (89.3%) 
EC 4.1. Carbon-Carbon Lyase  (62.2%) 

_ 

Ammonia 
monooxygenase (EC 
1.13.12.- )[ Q04508] 

SwissProt 
EC 1.13. oxygenase  (99.0%) 
Transmembrane  (99.0%) 
EC 2.4. Glycosyltransferases (83.9%) 

+ 

2-aminomuconate 
deaminase (EC 3.5.99.5) 
[P81593] 

SwissProt 
EC 3.5. Hydrolase acting on Carbon-Nitrogen Bonds, 
other than Peptide bonds (99.0%) 
EC 3.4. Peptidase (58.6%) 

+ 

ADP-ribosyltransferase 
(EC2.4.2.37) [P14299] SwissProt 

Transmembrane (92.9%) 
EC 2.4. Glycosyltransferase (90.3%) 
Outer membrane (58.6%) 

* 

Alpha-N-AFase II (EC 
3.2.1.55 ) [P82594] SwissProt EC 3.4. Peptidase (91.3%) _ 
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Aminopeptidase G (EC 
3.4.11.-) [Q54340] SwissProt 

EC 3.4. Peptidase (99.0%)  
TC 1.C. Pore-forming toxins (proteins and peptides) 
(58.6%)  

+ 

Alginate lyase (EC 
4.2.2.3 ) 
[Q59478] 

SwissProt 

Transmembrane (96.4%) 
EC 3.1.-.-: Hydrolases - Acting on Ester Bonds 
(78.4%)  
Outer membrane (58.6%) 

_ 

ATPE_YEAST (EC 
3.6.3.14) [P21306] SwissProt RNA-binding Proteins (58.6%) _ 

AhdA2cA1c 
(EC1.14.-.- ) 
[BAC65427.1] 

SwissProt 
EC 3.1. Hydrolase acting on Ester Bonds (82.2%) 
DNA-binding Protein (80.4%)  
Transmembrane (58.6%) 

_ 

 

 

Table 5-2 List of pairs of homologous enzymes of different families and the results of 
SVM functional family assignment. E1  F1 or E2  F2 indicates that enzyme E1 or 
E2 is assigned into family F1 and F2 respectively. E1  W or E2  W indicates that 
enzyme E1 or E2 is assigned into a wrong family respectively. The symbol + or - 
represents the cases that SVM is able or unable to distinguish the two enzymes and 
exclusively assign them into the respective family.  

Enzyme E1 (SwissProt 
Accession number) 

EC 
Class  
(F1) 

Enzyme E2 
(SwissProt 
Accession number) 

EC 
Class  
(F2) 

Sequence 
Similarity 
(BLAST 
E-Value) 

SVM Functional 
Family 
Assignment 

Assignment 
Status 

Glycolateoxidase  
(P05414) 

EC 
1.1 

IPP isomerase 
(Q8PW37) 

EC 
5.3 3.00E-07 E1 F1;E2 F2 + 

Creatine amidinohydrolase  
(P38488) 

EC 
3.5 

Prolinedipeptidase 
(O58885) 

EC 
3.4 3.00E-15 E1 F1;E2 F2 + 

Cystathionine 
gamma-synthase  
(P38675) 

EC 
2.5 

Methionine 
gamma-lyase 
(P13254) 

EC 
4.4 2.00E-15 E1 W;E2 F2 - 

Exocellobiohydrolase 1 
(P38676) 

EC 
3.2 

Cystathionine 
gamma-lyase 
(Q8VCN5) 

EC 
4.4 1.00E-12 E1 W;E2 F2 - 

Maleylacetoacetate 
isomerase  (P57109) 

EC 
5.2 

Glutathione 
S-transferase zeta 
class  (P57108) 

EC 
2.5 1.00E-51 E1 F1;E2 F2 + 

Tyrosine-protein kinase 
FRK (P42685) 

EC 
2.7 

Intestinalguanylate 
cyclase (P70106) 

EC 
4.6 2.60E-12 E1 F1;E2 F1 - 

Glutamate-1-semialdehyde 
aminotransferase 
(Q06774) 

EC 
5.4 

4-aminobutyrate 
aminotransferase 
(P22256) 

EC 
2.6 5.70E-32 E1 F1;E2 F2 + 

Exodeoxyribonuclease 
(P37454) 

EC 
3.1 

DNA- (apurinic or 
apyrimidinic site) 
lyase (P43138) 

EC 
4.2 1.60E-96 E1 F1;E2 F2 + 
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5.2. Prediction of Functional Class of Novel Viral Proteins 
(Paper V) 

5.2.1. Introduction of exploring knowledge of novel viral proteins 

The need to explore functions of novel viral proteins is required for better 

understanding of how viruses interact with their host. For example, large DNA viruses 

such as poxviruses encode for a unique variety of proteins that can specifically 

manipulate the function of important host immune factors/messengers, e.g. interferon, 

interleukins and chemokines. The complete genomes of 1,536 viruses have been 

sequenced (Viral genomes at NCBI244 as of September 2004). Knowledge of these 

genomes is very important for mechanistic study of viral infections and identification 

of molecular targets of antiviral therapeutics 245-247. However, the function of over 15% 

of the putative protein-coding open reading frames (ORFs) in these viral genomes is 

unknown 245, 247, 248. Determination of the function of these unknown ORFs is important 

for a more comprehensive understanding of the molecular mechanism of specific virus 

and for searching novel targets for antiviral drug development.  

The sequence of many of these unknown ORFs has no significant similarity to proteins 

of known functions, and their functions are difficult to predict based on sequence 

similarity. For instance, 50%, 100%, 20% and 67% of the unknown ORFs in the 

recently determined genomes of Fer-de-lance virus238, Grapevine fleck virus239, Indian 

citrus ringspot virus240, and SARS coronavirus241 are without a homolog in Swissprot 

database180 based on BLAST search against Swiss-Prot database180 as of September 

2004. This suggests that a large number of new viral proteins are likely to have no 

known sequence homolog.  

In the absence of clear sequence or structural similarities, the criteria for comparison of 

distantly-related proteins become increasingly difficult to formulate 16. Moreover, not 
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all homologous proteins have analogous functions 8. The presence of shared domain 

within a group of proteins does not necessarily imply that these proteins perform the 

same function21. Therefore, careful evaluation is required to determine whether method 

is useful for facilitating functional study of novel viral proteins with no homology to 

proteins of known function. 

This work evaluates the usefulness of SVMProt for predicting the functional class of 

viral ORFs of unknown function. It is assessed by using novel viral proteins that (1) 

have no homology in the Swissprot database180 based on sequence similarity search; (2) 

have a clear function indication described in the literature and (3) were not in the 

training set of SVMProt. These proteins are collected from an unbiased search of 

Medline 244 and Swiss-Prot database 180. The SVMProt predicted functional classes of 

these proteins are compared with the function described in the literature and databases 

to evaluate to what extent SVMProt are useful for functional class assignment of novel 

viral proteins. The prediction accuracy for assignment of these novel proteins is 

compared with the overall accuracy of the SVMProt assignment of a large number of 

proteins to examine the level of sequence similarity independence of SVMProt 

classification. 

5.2.2. Methods 

The key words, “novel protein virus” or “novel viral protein”, are used to search the 

Medline 244 and the Swissprot database 180 for finding viral proteins that are both 

described as novel and with their precise function provided. As the search of the 

Medline is confined to the abstracts, those proteins whose function is not explicitly 

mentioned in an abstract are excluded. Thus, the selected proteins likely account for a 

portion of the known novel viral proteins with available functional information.  

PSI_BLAST38 sequence analysis is subsequently conducted on each of these novel 
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viral proteins against all SwissProt entries in the SwissProt protein database 180 so that 

those with at least one sequence homolog of known function (including that of the same 

protein in different species) are removed. The commonly-used criterion38 for homologs, 

the similarity score e-value < the inclusion threshold value of 0.005, is used in this work. 

Finally, those proteins that are in the training sets of SVMProt are removed. 25 novel 

viral proteins are identified in this process. These protein and their protein accession 

number, literature-described functional indications and related references are given in 

Table 5-3. 
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Table 5-3 Novel viral proteins, literature-described functional indications as suggested from experiment and/or sequence analysis, and SVMProt 
predicted functions. The SVMProt predicted functions are categorized in one of the four classes: The first class is M (matched), in which all of 
the literature-described functional indications are predicted. The second is PM (partially matched), in which some of the literature-described 
functional indications are predicted. The third is WC (weakly consistent), in which some of the predicted functions can be considered to be 
consistent with literature-described functional indications on an inconclusive basis. The fourth is NM (not matched), in which No function 
predicted of the literature-described functions matched or consistent with a predicted function. 

Protein 
(SwissProt or 
NCBI  accession 
number) 

Virus Literature Described Function  
(reference) 

Function characterized  by SVMProt (probability of 
correct characterization P-value) 

Prediction 
status 

ADOMetase  
(P07693) Bacteriophage T3 Adenosylmethionine hydrolase (EC 

3.3.1.2) 249 

EC 3.3: Hydrolase of Ether Bonds  (99.0%); 
EC 2.7: Transferase of  Phosphorus-Containing Groups 
(71.3%); 
DNA-binding Proteins ( 65.4%);  

M 

AGT (P04519) Enterobacteria 
phage T4 

DNA alpha-glucosyltransferase  (EC 
2.4.1.26) 246 

EC 2.4 Glycosyltransferase (80.4%); 
EC 2.7 Transferase of Phosphorus-Containing Groups (68.5%) M 

BGT (P04547) Enterobacteria 
phage T4 

DNA beta-glucosyltransferase  (EC 
2.4.1.27) 246, 250 

EC 2.4 Glycosyltransferases (95.7%); 
EC 2.5 Transferase of Alkyl or Aryl Groups, Other than Methyl 
Groups (80.4 %) 

M 

DNA-directed 
RNA polymerase  
(P42488) 

African swine 
fever virus (strain 
BA71V) 

DNA-directed RNA polymerase, 
subunit 10 homolog (EC 2.7.7.6) 251. EC 2.7 Transferase of Phosphorus-Containing Groups (99.0%); M 

DNK (P04531) Enterobacteria 
phage T4 dNMPkinase (EC 2.7.4.13) 252 

EC 2.7 Transferase of Phosphorus-Containing Groups (99.0%); 
EC 2.4 Glycosyltransferase (96.4%);  
EC 1.1 Oxidoreductase of  the CH-OH group of donors 
(71.3%)  

M 

Endonuclease II  
(P07059) 

Enterobacteria 
phage T4 Endonuclease II (EC 3.1.21.1) 253. EC 3.1 Hydrolase of Ester Bonds (99.0%)  M 

Endonuclease IV 
(P39250) 

Enterobacteria 
phage T4 Endonuclease IV (EC 3.1.21.-) 246 No function predicted NM 

Endonuclease V  
(P04418) 

Enterobacteria 
phage T4 Endonuclease V (EC 3.1.25.1) 254 EC 3.1 Hydrolase of Ester Bonds(99.0%) M 
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Exonuclease  
(P03697) 

Bacteriophage 
lambda Exonuclease (EC 3.1.11.3) 255. 

EC 3.1 Hydrolase of  Ester Bonds(99.0%);  
EC 4.1 Carbon-Carbon Lyases (88.1%);  
EC 2.7 Transferase of Phosphorus-Containing Groups(68.5%); 
EC 1.1 Oxidoreductase of  the CH-OH group of donors 
(58.6%) 

M 

FALPE  
(Q65010) 

Amsacta moorei 
Entomopoxvirus 

Associated with unique cytoplasmic 
structures, filament-associated protein  
256 

No function predicted NM 

Gp61.9 (P13312) Enterobacteria 
phage T4 Ribonuclease (EC 3.1.-.-) 257 EC 3.1 Hydrolase of  Ester Bonds(99.0%) M 

IRF protein 
(P13299) 

Enterobacteria 
phage T4 

Intron-associated endonuclease 1 (EC 
3.1.-.-) 258 

EC 3.1 Hydrolase of Ester Bonds(99.0 %);  
DNA-binding Protein (83.9%)  M 

I-TevII (P07072) Enterobacteria 
phage T4 

Intron-associated endonuclease 2 (EC 
3.1.-.-) 259 EC 3.1 Hydrolase of Ester Bonds(99.0%) M 

MotA protein  
(P22915) bacteriophage T4 DNA-binding, transcription regulation 

260 
DNA-binding Proteins (99.0 %); 
EC 3.1: Hydrolase - Acting on Ester Bonds (68.5%) M 

ORF13 (P51715) Haemophilus 
phage HP1 

Putative adenine-specific methylase 
(EC 2.1.1.72) 261 

EC 2.1 Transferase of One-Carbon Groups (99.0%); 
Outer membrane (58.6%);  
mRNA-binding Protein (58.6%) 

M 

Outer capsid 
protein VP4 
(P35746) 

Bovine rotavirus 
(serotype 10 / 
strain B223) 

surface outer capsid protein  262 Coat protein (99.0%) M 

possible CC 
chemokine 
(NP_042976) 

Human 
herpesvirus 6 chemokine like  263 No function predicted NM 

Protein kinase  
(P00513) 

Enterobacteria 
phage T7 Protein kinase (EC 2.7.1.37) 264 EC 2.7 Transferase of Phosphorus-Containing Groups ( 99.0 %) M 

Putative BARF0 
protein 
(Q8AZJ4) 

Epstein-Barr 
virus 

Membrane associated and encodes 
three arginin-rich motifs of 
RNA-binding properties 265 

EC 4.1.-.-: Carbon-Carbon Lyase (58.6%) NM 

R.CviAII 
(P31117) 

Paramecium 
bursaria Chlorella 
virus 1 

Endonuclease CviAII (EC 3.1.21.4) 266 EC 3.1 Hydrolase of Ester Bonds (99.0%)  M 
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R.CviJI  
(P52283) 

Chlorella virus 
IL3A 

Type II restriction enzyme CviJI (EC 
3.1.21.4) 267 

EC 3.1  Hydrolase of Ester Bonds (99.0%);  
rRNA-binding Proteins(98.8%) ; 
EC 3.4 Peptidase  (68.5%) 

M 

SeMNPV 
ORF18 
(AAF33548) 

Spodoptera 
exigua 
nucleopolyhedrov
irus 

Transferase 268 No function predicted NM 

SPLT137 
(NP_258405) SpLtMNPV virus A noval envelope protein 269 No function predicted NM 

TRL10 
(AAL27474) 

Human 
cytomegalovirus 
(HCMV) 

Structural envelop glycoprotein 270   Transmembrane (98.2%) NM
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5.2.3. Results and Discussion 

SVMProt predicted functional classes for each of the 25 novel viral proteins together with 

their literature-described function are given in Table 5-3. SVMProt may characterize more 

than one class for each protein and the probability of correct prediction for each class is 

given in the table. There are 18 proteins with the top hit of the SVMProt assigned functional 

class matching their functions described in the literature, representing 72% of the novel viral 

proteins studied in this work. These proteins are MotA protein of bacteriophage T4 260, outer 

capsid protein VP4 of bovine rotavirus (serotype 10 / strain B223) 262, ADOMetase of 

bacteriophage T3 249, R.CviJI of chlorella virus IL3A 267, exonuclease of bacteriophage 

lambda 255, R.CviAII of paramecium bursaria chlorella virus 1 266, ORF13 of haemophilus 

phage HP1 261, Protein kinase of enterobacteria phage T7 264, DNA-directed RNA 

polymerase of African swine fever virus (strain BA71V)251, AGT 246, BGT 248, 250, DNK 252, 

Endonuclease II 253, Endonuclease V 254, Gp61.9 257, IRF protein 258, and I-TevII 259 of 

enterobacteria phage T4. 

 

MotA protein of bacteriophage T4 has been found to be a transcription activator that binds to 

DNA 260 and the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA 

polymerase 271. The top hit of SVMProt predicted functional class for this protein is the 

DNA-binding, which matches with literature-described functions. Bovine rotavirus is a 

double-stranded RNA virus which is naked. Thus the outer capsid protein VP4 of bovine 

rotavirus (serotype 10 / strain B223) is located at the viral surface acting as part of the viral 

coat 262. This protein is predicted by SVMProt as a coat protein, which is consistent with 

literature-described function. The other 14 proteins are enzymes and SVMProt correctly 

assigns all these to the respective enzyme EC class. 
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Because these proteins have no homolog of known function in the SwissProt entries of 

Swissprot database based on PSI-BLAST search, our study suggests that SVMProt has 

certain level of capability for providing useful hint about the functional class of novel 

proteins with no or low homology to known proteins, and this capability is not based on 

sequence similarity or clustering. The overall accuracy of 72% for the assignment of 

the novel viral proteins is smaller than that of 87% for SVMProt functional class 

assignment of 34,582 proteins.  This indicates certain level of the 

sequence-similarity-independent nature of SVM protein classification.  

 

Several factors may affect the accuracy of SVMProt for functional characterization of 

novel plant proteins. One is the diversity of protein samples used for training SVMProt. 

It is likely that not all possible types of proteins, particularly those of distantly related 

members, are adequately represented in some protein classes. This can be improved 

along with the availability of more protein data. Not all distantly related proteins of the 

same function have similar structural and chemical features. There are cases in which 

different functional groups, un-conserved with respect to position in the primary 

sequence, mediate the same mechanistic role, due to the flexibility at the active site 272. 

This plasticity is unlikely to be sufficiently described by the physicochemical 

descriptors currently used in SVMProt. Therefore, SVMProt in the present form is not 

expected to be capable of classification of these types of distantly related enzymes.  

 

Some of the SVMProt functional classes are at the level of families and superfamilies 

that may include a broad spectrum of proteins. It has been shown that, SVM works not 

as well as HMM for distinguishing proteins in a superfamily, but may be more accurate 
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with subfamily discrimination 31. Thus, the use of some large families and 

superfamilies as the basis for classification may affect the prediction accuracy of 

SVMProt to some extent. 
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5.3. Prediction of functional class of novel plant proteins 
(Paper VI) 

5.3.1. Introduction of probing function of unknown ORFs in plant 

Plants have the well known advantages for the production of clinically-useful, 

therapeutic proteins, such as low-cost, large-scale production of safe and biologically 

active mammalian proteins273. In the completely sequenced genome of Arabidopsis, the 

function of 30% of the putative protein-coding open reading frames (ORFs) remain 

uncovered 234, 235. Similar percentage of unknown ORFs is expected in other plant 

genomes. The sequence of these ORFs has no significant similarity to those of known 

proteins, and their functions are difficult to probe by using sequence alignment and 

clustering methods. It is thus desirable to explore complementary methods or 

combination of methods for providing useful hint about the function of unknown 

ORFs.  

Various methods for probing protein function have been developed. These include 

evolutionary analysis 8, 9, hidden Markov models 274, structural consideration 10, 27, 

protein/gene fusion 11, 12, protein-protein interactions 14, motifs 19, family 

classification by sequence clustering 12, and functional family prediction by statistical 

learning methods 31, 34, 43, 45, 46. In the absence of clear sequence or structural 

similarities, the criteria for comparison of distantly-related proteins become 

increasingly difficult to formulate 16. Moreover, not all homologous proteins have 

analogous functions 8. The presence of shared domain within a group of proteins does 

not necessarily imply that these proteins perform the same function 21. Therefore 

careful evaluation is needed to determine which method or combination of methods is 

useful for facilitating functional study of novel proteins with no homology to proteins 

of known function. 
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In this work, SVMProt is assessed for its capability in prediction of the functional 

class of a number of literature-described novel plant proteins that have no homolog in 

the SwissProt entries of the SwissProt database based on PSI-BLAST search and with 

their functional indications provided in the literature. There are 49 plant proteins 

selected from a comprehensive search of Medline abstracts and SwissProt databases 

in 1999-2004 to test SVMProt. These proteins are selected based on 1) no sequence 

similar proteins in Swissprot protein database, 3) not in our dataset for training 

SVMProt and 3) with precise functional indications provided by the literature. These 

proteins represent unique proteins whose functions cannot be confidently predicted by 

sequence alignment and clustering methods at present. The predicted functional class 

of 31 proteins is consistent, and that of 4 other proteins is weakly consistent with 

literature-described functions. Overall, the functional class of 71.4% of these proteins 

is consistent or weakly consistent with literature described functional indications. 

SVMProt shows certain level of capability for providing useful hint about the 

function of novel plant proteins un-similar to known proteins. 

5.3.2.  Methods of novel plant proteins selection 

The key words “novel plant protein” is used to search two sources for finding plant 

proteins that were both described as novel and with their precise functional 

indications provided. One is the abstracts of Medline 244 published during 1999-2004. 

The sequences of these proteins are obtained by querying the protein database. As the 

search is confined to the abstracts, those proteins whose functional indication is not 

apparently hinted in an abstract are excluded. Thus, the selected proteins likely 

account for a portion of the known novel plant proteins with available functional 

indications. The second source is the SwissProt database180. The key words “novel 

plant” is used to search the description field of the plant protein entries to find those 
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with precise functional indications provided. There are 413 proteins selected from 

these two search procedures. 

 

Some of these selected proteins may become less novel than originally described 

because of the subsequent findings of additional proteins. Thus PSI_BLAST 38 search 

is conducted for each of these proteins against all SwissProt entries in the SwissProt 

protein database 180 to determine whether it has a sequence homolog (including that 

of the same protein of different species). The commonly-used criterion for homologs, 

the similarity score e-value < the inclusion threshold value of 0.005 38, is used in this 

work. Based on PSI-BLAST analysis, 49 of these proteins have no sequence homolog 

in the SwissProt entries of SwissProt database and they are not in the training sets of 

SVMProt.  

 

These 49 proteins, along with their NCBI protein accession number, or Swiss-Prot 

accession number, literature-described functional indications and related references, 

are given in Table 5-4. Only a few proteins published before 2001 are selected 

primarily because more proteins published in earlier years tend to have their homologs 

available than those published more recently. Because of the lack of a sequence 

homolog, sequence alignment and clustering tools would not confidently predict the 

function of these proteins. They are thus ideal for testing the feasibility of using 

SVMProt for facilitating functional characterization of novel plant proteins. 
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5.3.3. Prediction results and discussions 

 

Table 5-4 gives SVMProt ascribed functional classes for each of the 49 novel plant 

proteins together with their literature described functional indications. SVMProt may 

characterize more than one functional class and the probabilities of correct prediction 

for each class are given in Table 5-4. There are 31 proteins with SVMProt predicted 

class to be consistent with literature-described functional indications, 20 of which are 

enzymes with their enzyme classification (EC) number assigned in the literature. The 

predicted functional class of these enzymes can thus be confirmed based on the 

comparison with their respective EC number. These enzymes are SPP of Aegilops 

speltoides 275, CPDase276 and GddR of Arabidopsis thaliana, Cucumisin of Cucumis 

melo var reticulates277,  AOC  of Hordeum vulgare, Spp of Hordeum vulgare var 

distichum 275, AOC278 and RdRP279 of Lycopersicon esculentum, 

Beta-1,2-xylosyltransferase and AOC of Oryza sativa, GrG of Phaseolus angularis 280, 

PAT1 and rfs of Pisum sativum, Sucrose-phosphatase of  Secale cereale 275, CR6 of 

Solanum tuberosum 281, CPDase, SPP1,SPP2,SPP3 and fut12  of Triticum aestivum. 

Some of these enzymes do not yet  have a reference because they have been submitted 

to Swissprot database prior to their publications 180. 

 

Four proteins are predicted as transmembrane and another one as a DNA-binding 

protein by SVMProt, which can be directly compared with their respective literature 

described functional indications. PSI-O of Arabidopsis thaliana is known to have two 

transmembrane helices 282. PM19 of Hordeum vulgare has been described as a putative 

plasma membrane protein 283. OsBLE2 of Oryza sativa has been suggested to contain 
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nine possible transmembrane regions 284. NEC1 of Petunia x hybrida has been found to 

be reminiscent of a transmembrane protein with possible role in sugar metabolism and 

nectar secretion 285. MYB-related transcription factor EPR1 of Arabidopsis thaliana is 

part of a regulatory feedback loop that suppresses its own expression, and it is known to 

specifically recognizes the DNA sequence 5'-YAAC[GT]G-3' 286. The SVMProt 

predicted transmembrane or DNA-binding property for each of these proteins appears 

to be consistent with literature descriptions. 

 

The predicted functional class of the other four proteins also appears to be consistent 

with literature described functional indications based on our analysis. NCP1 of 

Lycopersicon esculentum has been described as a nuclear matrix protein and a 

candidate for a plant-specific structural protein with a function both in the nucleus and 

cytoplasm 287. The top hit of SVMProt predicted functional classes for this protein is 

the structural protein class that includes matrix proteins, core proteins, viral occlusion 

body, and keratins. This prediction is consistent with literature-described function. 

Antimicrobial peptide 2, 3 and 4 of Pinus sylvestris are known to interfere with cell 

wall synthesis 288. The top hit of SVMProt predicted class for each of these proteins is 

EC3.4 peptidase enzyme family. It is known that members of peptidase family such as 

penicillin-binding protein 5 (EC 3.4.16.4) polymerize and modify peptidoglycan, the 

stress-bearing component of the bacterial cell wall, thereby helping to create the 

morphology of the peptidoglycan exoskeleton together with cytoskeleton proteins that 

regulate septum formation and cell shape 289. While other mechanisms cannot be ruled 

out yet, EC3.4 peptidase enzymatic activity is certainly an interesting possibility for the 

observed interference of each of these proteins with cell wall synthesis. 
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There are 4 proteins whose SVMProt predicted function may possibly explain literature 

described functional indications non-conclusively. The predicted functional class of 

each of these proteins is thus considered to be weakly consistent with literature 

descriptions pending further studies. PLATZ1 of Pisum sativum has been found to be 

responsible for A/T-rich sequence-mediated transcriptional repression 290. The top 

ranked SVMProt predicted class for this protein is the nuclear receptor class. Nuclear 

receptors such as thyroid hormone T3 receptor have been known to be involved in 

transcriptional repression 291. Thus, there is a possibility that PLATZ1 is a nuclear 

receptor. SPA15 of Ipomoea batatas, has been found to be specifically associated with 

the cell wall and involved in oligogalacturonides signaling during leaf senescence 292. 

SVMProt predicts this protein as an outer membrane protein, which is possible to 

possess both properties.  

 

SVMProt predicts three of these proteins as DNA-binding protein. OsGRF1 of 

Arabidopsis thaliana has been described as a putative transcription factor possibly 

playing a regulatory role in stem elongation 293. bnKCP1 of  Brassica napus contains a 

putative kinase-inducible domain and it may function as a transcription factor 294. 

Transcription factors primarily exert their function through DNA-binding295, thus these 

two proteins are likely DNA-binding proteins.  HvS40 of Hordeum vulgare subsp. 

Vulgare has been described as a novel nucleus-targeted protein 296. The nuclear HvS40 

protein belongs to the group of nuclear proteins that possess two putative NLSs, one 

belonging to the SV40 class, the other to the class of bipartite NLSs. In the case of the 

maize transcription factor opaque 2, the bipartite NLS has an additional function in 

DNA binding 296. Although there is no other evidence, it is possible that HvS40 of 

Hordeum vulgare subsp. Vulgare is a DNA-binding protein like the other of bipartite 
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NLS containing proteins such as the maize transcription factor opaque 2. 

 

Another protein, HvCaBP1 of Hordeum vulgare, has been described as a putative 

calcium binding protein 297. One of the SVMProt predicted classes for this protein is 

outer membrane class. It is known that some outer membrane proteins, such as the 40 

kDa outer membrane protein, form spheroplast at a high rate in an isotonic medium in 

the presence of calcium and the calcium-protein complex helps maintaining the 

structural integrity of the cell wall 298. Thus, there is some possibility that HvCaBP1 is a 

calcium-binding outer membrane protein. 

 

Overall, SVMProt characterized functions of 71.4% of the 49 novel plant proteins 

studied in this work are found to be consistent or weakly consistent with the 

functional indications described in the literature. Because all of these proteins have no 

homolog in the SwissProt entries of Swissprot database based on PSI-BLAST search, 

our study suggests that SVMProt has certain level of capability for probing the 

functional class of novel plant proteins with no or low homology to known proteins, 

and this capability is not based on sequence similarity or clustering. 
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Table 5-4 Novel plant proteins, literature-described functional indications as suggested by the literature and SVMProt predicted functional 
classes. The SVMProt predicted functional classes are categorized in one of the four classes: The first class is C (consistent with 
literature-described functional indications), the second is WC (weakly consistent with literature-described functional indications, i.e., the 
predicted functional class can be considered to be consistent to the literature-described functions on an inconclusive basis.), the third is NC (not 
consistent with literature-described functional indications), and the fourth is represented by a question mark “?” (Currently available information 
is insufficient to determine prediction status). 

Host Plant 
Protein (NCBI or 
SwissProt Accession
number) 

 Literature-described function (Reference) SVMProt predicted functional class (probability 
of correct prediction) 

Prediction 
Status 

Aegilops 
speltoides SPP(AAO33156) Sucrose-phosphatase (EC 3.1.3.24) 275 

EC 3.1  Hydrolases - Acting on Ester 
Bonds(94.7%); 
EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (76.2%); 
TC 1.C  Channels/Pores - Pore-forming toxins 
(proteins and peptides) (58.6%) 

C 

MYB-related transcription 
factor EPR1 (BAC98462) 

DNA-binding protein, specifically recognizes the 
sequence 5'-YAAC[GT]G-3' 286 DNA-binding Protein (98.8%) C 

OsGRF1 (AAM52876) putative transcription factor playing a regulatory 
role in stem elongation293 DNA-binding Protein (97.0%) WC 

PSI-O (CAD37939) contains two transmembrane helices 282 Transmembrane (68.5%); 
EC 5.3 Intramolecular Oxidoreductase (58.6%) C 

ERN1 (CAA75349) a novel ethylene-regulated nuclear protein, 
putative transcription factor 299 

EC 4.2 Carbon-Oxygen Lyase (58.6%); 
7 transmembrane receptor metabotropic glutamate 
family (58.6%) 

NC 

CPDase (O04147) Cyclic phosphodiesterase (EC 3.1.4.-)  276 DNA-binding Proteins(71.3%); 
EC 3.1  Hydrolases - Acting on Ester Bonds(58.6%) C 

Arabidopsis 
thaliana 

GddR precursor
(Q9FPU3) 

 Glutathione dependent dehydroascorbate
reductase (EC 1.8.5.1) * 

 

EC 1.8  Oxidoreductases - Acting on a sulfur group 
of donors(99.0%); 
Transmembrane(58.6%); 
TC 1.C Channels/Pores - Pore-forming toxins 
(proteins and peptides) (58.6%) 

C 

Brassica napus bnKCP1 (AAO53442) contains a putative kinase-inducible domain,  
may function as a transcription factor 294 DNA-binding Protein (68.5%) WC 
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Cucumis melo var 
reticulatus Cucumisin (Q940D5) serine protease(EC 3.4.21.25)277 

EC 3.4  Hydrolases - Acting on peptide bonds 
(Peptidases) (99.0%); 
EC 3.1  Hydrolases - Acting on Ester Bonds(78.4%)

C 

CPP1 (CAA09028) 
DNA-binding protein interacting with the 
promoter of the soybean leghemoglobin gene 
Gmlbc3 300 

No function predicted NC 

Glycine max 

GmN6L (AAL86737) 
both as a soluble protein and as a peripheral 
membrane protein bound to the peribacteroid 
membrane, a late nodulin 301 

EC 1.1 Oxidoreductase acting on CH-OH group of 
donors (73.8%); 
EC 3.6 Hydrolase Acting on Acid Anhydrides 
(71.3%); 

? 

Lem1 (AAK58425) possibly associated with membranes, may play a 
role in organ development 302 

EC 3.4 Peptidase (58.6%); 
Lectin (58.6%) NC 

HvCaBP1 (AAK92225) putative calcium binding protein 297 

EC 1.3 Oxidoreductase acting on CH-CH group of 
donors (85.4%); 
EC 4.1 Carbon-Carbon Lyase (62.2%); 
Outer membrane (58.6%) 

WC 

PM19 (AAF29532) putative plasma membrane protein 283   Transmembrane (68.5%) C
Hordeum vulgare

AOC  (Q711R0) Allene oxide cyclase precursor (EC 5.3.99.6)* 

EC 5.3  Isomerases - Intramolecular 
Oxidoreductases (95.7%); 
EC 1.10  Oxidoreductases - Acting on diphenols 
and related substances as donors (65.4%) 

C 

HvS40 (CAC36956) a novel nucleus-targeted protein with connection 
to the degeneration of chloroplasts 296 

DNA-binding Protein (78.4%); 
Nuclear Receptor (65.4%); 
EC 2.1 Transferase of One-Carbon Groups (58.6%); 
RNA-binding Protein (58.6%) 

WC 

Hordeum vulgare 
subsp. vulgare 

SnIP1 (CAB97356) interacts with SNF1-related protein kinase 303 

EC 3.4 Peptidase (71.3%); 
EC 5.3 Intramolecular Oxidoreductase (68.5%); 
EC 1.3 Oxidoreductase acting on CH-CH group of 
donors (65.4%); 
EC 3.5 Hydrolase acting on Carbon-Nitrogen Bonds 
other than Peptide Bonds (62.2%); 
7 transmembrane receptor secretin family (58.6%) 

NC 

Hordeum vulgare 
var distichum Spp (Q84ZX7) Sucrose-phosphatase (EC 3.1.3.24) 275 

EC 3.1  Hydrolases - Acting on Ester Bonds 
(97.7%); 
EC 2.4  Transferases - Glycosyltransferases(91.3%)

C 
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Ipomoea batatas SPA15 (AAK08655) specifically associated with the cell wall 292   Outer membrane (58.6%) C
Lilium 
longiflorum LlSCL (BAC77269) strong activity of transcriptional activation 304 No function predicted NC 

NCP1 (AAK83083) Nuclear Matrix Protein, structural protein with a 
function both in the nucleus and cytoplasm 287 

Structural protein (99.0%) 
EC 5.4 Intramolecular Transferase (85.4%) 
DNA-binding Proteins (65.4%) 

C 

AOC (Q9LEG5) Allene oxide cyclase precursor (EC 5.3.99.6) 278 
EC 5.3  Isomerases - Intramolecular 
Oxidoreductases (99.0%); 
EC 4.1  Lyases - Carbon-Carbon Lyases(58.6%) 

C 

RdRP (Q9ZR58) RNA-directed RNA polymerase(EC 2.7.7.48) 279 EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (99.1%) C 

LeMan3 (Q9FUQ6) Endo-beta-mannanase precursor(EC 3.2.1.78) * 
EC 2.4  Transferases - 
Glycosyltransferases(95.2%) ; 
EC 2.3  Transferases - Acyltransferases (58.6%) 

NC 

Lycopersicon 
esculentum 

MAN5 (Q6YM50) Mannan endo-1,4-beta-mannanase precursor (EC 
3.2.1.78)305 EC 2.3  Transferases - Acyltransferases (68.5%) NC 

Oenothera 
bertiana A6L (P07513) ATP synthase protein 8(EC 3.6.3.14) 180 

EC 3.1  Hydrolases - Acting on Ester 
Bonds(58.6%); 
Transmembrane(58.6%); 
mRNA-binding Proteins(58.6%) 

NC 

OsBLE2 (BAB88327) 
contains nine possible transmembrane regions, 
involved in BL-regulated growth and 
development processes 306 

Transmembrane (99.1%) Alpha-Type channel 
(58.6%) C 

OsMYBS2 (AAN63153) 
trans-activates a promoter containing the 
TATCCA element, interacts with other protein 
factors 307 

Transmembrane (71.3%); 
7 transmembrane receptor secretin family (58.6%) NC 

Beta-1,2-xylosyltransferas
e (Q703H1) Beta-1,2-xylosyltransferase (EC 2.4.2.38)* 

EC 2.4  Transferases - Glycosyltransferases 
(98.8%) ; 
EC 4.2  Lyases - Carbon-Oxygen Lyases (58.6%); 
Outer membrane (58.6%) 

C 

Oryza sativa 

AOC(Q8L6H4) Allene oxide cyclase (EC 5.3.99.6) * 

EC 5.3  Isomerases - Intramolecular 
Oxidoreductases(99.0%); 
EC 1.10  Oxidoreductases - Acting on diphenols 
and related substances as donors (58.6%) 

C 
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Aspartate 
aminotransferase 
(Q42991) 

Aspartate aminotransferase (EC 2.6.1.1) * 
TC 1.C Channels/Pores - Pore-forming toxins 
(proteins and peptides) (58.6%); 
RNA-binding Proteins (58.6%) 

NC 

Petunia x hybrida NEC1 (AAG34696) reminiscent of a transmembrane protein, possible 
role in sugar metabolism and nectar secretion 285 Transmembrane (97.3%) C 

Phaseolus 
angularis GrG (Q9SBZ0) Galactinol-raffinose galactosyltransferase (EC 

2.4.1.67) 280 

EC 2.4  Transferases - Glycosyltransferases 
(96.4%); EC 4.2  Lyases - Carbon-Oxygen Lyases 
(78.4%) 

C 

antimicrobial peptide 1 
(AAL05052) Interferes with cell wall synthesis 288   Transmembrane (58.6%) NC

antimicrobial peptide 2 
(AAL05053) interferes with cell wall synthesis 288 EC 3.4 Peptidase (58.6%); 

EC 4.1 Carbon-Carbon Lyase (58.6%) C 

antimicrobial peptide 3 
(AAL05054) interferes with cell wall synthesis 288 EC 3.4 Peptidase (58.6%) C 

Pinus sylvestris 

antimicrobial peptide 4 
(AAL05055) interferes with cell wall synthesis 288 EC 3.4 Peptidase (58.6%); 

EC 4.1 Carbon-Carbon Lyase (58.6%) C 

PLATZ1 (BAB69816) 
zinc-dependent DNA-binding protein responsible 
for A/T-rich sequence-mediated transcriptional 
repression 290 

Nuclear Receptor (68.5%); 
EC 3.1 Hydrolase Acting on Ester Bonds (62.2%); 
EC 4.1 Carbon-Carbon Lyase (58.6%) 

C 

PAT1 (Q43085) Phosphoribosylanthranilate transferase (EC 
2.4.2.18) * 

EC 2.4  Transferases - Glycosyltransferases 
(99.1%); Transmembrane (96.1%); 
EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (76.2%) ; 
7 transmembrane receptor (Secretin family) 
(58.6%) ; 
7 transmembrane receptor (metabotropic glutamate 
family) (58.6%) 

C Pisum sativum 

rfs (Q8VWN6) Raffinose synthase (EC 2.4.1.82) * 
EC 2.4  Transferases - Glycosyltransferases 
(98.6%); Aptamer-binding protein (98.0%); 
EC 4.2  Lyases - Carbon-Oxygen Lyases (78.4%) 

C 

Secale cereale Sucrose-phosphatase 
(Q84ZX9) Sucrose-phosphatase (EC 3.1.3.24) 275 

EC 3.1  Hydrolases - Acting on Ester Bonds 
(86.8%); 
EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (62.2%) 

C 

120 



Chapter 5 Prediction of the functional class of novel proteins - Specific Case Studies 

Solanum 
tuberosum CR6(P48505) Ubiquinol-cytochrome C reductase complex 6.7 

kDa protein (EC 1.10.2.2) 281 

EC 1.10  Oxidoreductases - Acting on diphenols 
and related substances as donors (99.0%); 
EC 3.4  Hydrolases - Acting on peptide bonds 
(Peptidases) (58.6%) 

C 

CPDase (P62809) Cyclic phosphodiesterase (EC 3.1.4.-) 308 

EC 1.9  Oxidoreductases - Acting on a heme group 
of donors (58.6%); 
EC 3.1  Hydrolases - Acting on Ester Bonds 
(58.6%); 
EC 3.4  Hydrolases - Acting on peptide bonds 
(Peptidases) (58.6%); 
Transmembrane (58.6%) ; 
Aptamer-binding protein (58.6%) 

C 

SPP3 (Q9ARG8) Sucrose-6F-phosphate phosphohydrolase SPP3 
(EC 3.1.3.24) *

EC 3.1  Hydrolases - Acting on Ester Bonds 
(96.4%); 
EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (92.1%); 
TC 1.C. Channels/Pores - Pore-forming toxins 
(proteins and peptides) (58.6%) 

C 

SPP2 (Q9AXK5) Sucrose-6F-phosphate phosphohydrolase SPP2 
(EC 3.1.3.24) * 

EC 3.1  Hydrolases - Acting on Ester Bonds 
(93.6%); 
EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (68.5%); 
TC 1.C. Channels/Pores - Pore-forming toxins 
(proteins and peptides) (58.6%) 

C 

Triticum aestivum

SPP1 (Q9AXK6) Sucrose-6F-phosphate phosphohydrolase SPP1 
(EC 3.1.3.24) * 

EC 3.1  Hydrolases - Acting on Ester Bonds 
(96.4%); 
EC 2.1  Transferases - Transferring One-Carbon 
Groups (58.6%); 
TC 1.C.Channels/Pores - Pore-forming toxins 
(proteins and peptides) (58.6%) 

C 

                                                        
* NOTE: Some of these enzymes do not yet have a reference because they have been submitted to Swissprot database prior to their publications
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fut12 (Q7XAG0) GDP-fucose protein-O-fucosyltransferase 1 (EC 
2.4.1.221) * 

EC 2.4  Transferases - Glycosyltransferases 
(98.4%); 
EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (96.7%) 

C 

Vigna 
unguiculata  FGARAT (Q8W160) Formylglycinamide ribonucleotide

amidotransferase  (EC 6.3.5.3) * 
 

EC 2.4  Transferases - Glycosyltransferases 
(95.2%); 
DNA-binding Proteins (73.8%); 
EC 2.7  Transferases - Transferring 
Phosphorus-Containing Groups (62.2%) 

NC 

Zea mays ATPase (Q6V916) Putative AAA-type ATPase (EC 3.6.4.8) * EC 2.4  Transferases - Glycosyltransferases 
(71.3%) NC 
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5.4. Prediction of the functional class of novel bacterial 
proteins (Paper VII) 

5.4.1. Overview of function prediction of novel bacterial ORFs  

The complete genomes of a growing number of bacteria have been sequenced. The total 

number of distinct complete genomes in the bacterial genome database at NCBI 

(http://www.ncbi.nlm.nih.gov/genomes/static/eub_g.html) has reached 202. 

Knowledge of these genomes has facilitated the mechanistic study of bacterial growth 

and infections 309, 310, and the search of antibacterial targets 311-314. The function of a 

substantial percentage (17-20%) of the putative protein-coding open reading frames 

(ORFs) in these genomes is unknown 236, 237. Determination of the function of these 

ORFs is important for a more comprehensive understanding of the molecular 

mechanism of bacterial growth and infections and for searching novel antibacterial 

targets.  

The sequence of these ORFs has no significant similarity to proteins of known 

functions. As a result, their functions are difficult to probe based on sequence similarity 

alone. The system developed in this work has shown some potential for assignment of a 

functional class of distantly related proteins and homologous proteins of different 

functions as well as homologous proteins of similar functions43, 45, 46, 227. It classifies 

proteins into functional classes defined based on activities or physico-chemical 

properties rather than sequence similarity 14, 31, 43, 45, 228.  This work is intended to 

further evaluate the capability of SVMProt for predicting the functional class of 

bacterial proteins of unknown function. It is assessed by using novel bacterial proteins 

that are without a single homolog in the Swiss-Prot database 180 and not included in the 

training sets of SVMProt. The precise functions of these proteins are described in the 

literature. These proteins are collected from an unbiased search of Medline 244 and 

123 

http://www.ncbi.nlm.nih.gov/genomes/static/eub_g.html


Chapter 5 Prediction of the functional class of novel proteins - Specific Case Studies 

Swiss-Prot database 180. The SVMProt predicted functional classes of these proteins are 

compared with the reported function to evaluate to what extent SVMProt is useful for 

the functional class assignment of these proteins. The prediction accuracy for the 

assignment of these novel proteins is compared with the overall accuracy of the 

SVMProt assignment of a large number of proteins to examine to which extent that 

sequence similarity affects the prediction accuracy of SVMProt. 

5.4.2.  Selection of novel bacterial proteins 

The key words, “novel protein bacterium” or “novel bacterial protein”, are used to 

search the Medline 244 and the Swiss-Prot database 180 for finding bacterial proteins that 

are both described as novel and with their precise function provided. As the search of 

the Medline is confined to the abstracts, those proteins whose function is not explicitly 

hinted in an abstract are not selected. Thus the selected proteins likely account for a 

portion of the known novel viral proteins with available functional information.  

PSI-BLAST38 sequence analysis is subsequently conducted on each of these novel viral 

proteins against all Swiss-Prot entries in the Swiss-Prot protein database 180 so that 

those with at least one sequence homolog of known function (including that of the same 

protein in different species) are removed. The commonly-used criterion for homologs, 

the similarity score e-value less than the inclusion threshold value of 0.005 38, is used in 

this work. Finally, those proteins that are in the training sets of SVMProt are removed. 

46 novel bacterial proteins are identified in this process, which together with their 

protein accession number and literature-described functional indications and related 

references are given in Table 5-5. 

5.4.3. Results and discussion of functional class prediction of novel bacterial 
proteins 

Table 5-5 gives SVMProt ascribed functional classes for each of the 46 novel bacterial 
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proteins together with their literature-described function. As shown in Table 5-5, there 

are 26 proteins with the top hit and 5 proteins with one of the hits of the SVMProt 

assigned functional classes matching the reported function, representing 67.4% of the 

novel bacterial proteins studied in this work. The 26 top-hit-matching proteins are Nhe 

of Bacillus cereus 315, AAC(6') of Enterobacter aerogenes 316, alpha-clostripain of 

Clostridium histolyticum 317, AMDASE of Bordetella bronchiseptica 318, 

aminopeptidase G of Streptomyces lividans 319, 2-aminomuconate deaminase of 

Pseudomonas pseudoalcaligenes 320, ammonia monooxygenase of Nitrosomonas 

europaea 321 , AmpE protein of  Escherichia coli 322, esterase precursor of 

Streptomyces scabies 323, CM of Bacillus subtilis 324, cytochrome c oxidase polypeptide 

IV  of Paracoccus denitrificans 325, 2-dehydro-3-deoxygalactonokinase of  

Escherichia coli 326, DNA polymerase III theta subunit  of Escherichia coli 327, 

Extracellular lipase of Aeromonas hydrophila 328, Extracellular serine protease of 

Bacteroides nodosus 329, flp-1 of Actinobacillus actinomycetemcomitans 330, Histidine 

protein kinase of Lactobacillus plantarum 331, Monofunctional chorismate mutase 

precurs of Erwinia herbicola 332, PNGase F Glycopeptide N-glycosidase N-glycanase  

of Flavobacterium meningosepticum 333, Precorrin-6A reductase of Pseudomonas 

denitrificans 334, Putative cytochrome P450 128 of Mycobacterium tuberculosis 335, 

Thiocyanate hydrolase beta subunit  of Thiobacillus thioparus 336, Thiaminase I 

[Precursor] of Paenibacillus thiaminolyticus 337, DNA alpha-glucosyltransferase of 

Bacteriophage T4 246, Type II restriction enzyme ScaI of Streptomyces caespitosus 338, 

and ATP synthase C chain  of Rhodospirillum rubrum, Paenibacillus thiaminolyticus 

339. 

 

Flp-1 protein of Actinobacillus actinomycetemcomitans has been found to be 
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associated with the bacterial cell surface and smaller structures, involved in fibril 

formation and cell adherence 330. The top hit of SVMProt predicted functional class for 

this protein is the cell adhesion class, which matches with the literature-described 

functions. AmpE protein of Escherichia coli has been reported to be an integral 

membrane protein with a likely ATP-binding site between the second and third putative 

transmembrane region 340. This protein is predicted as a transmembrane protein by 

SVMProt, which is consistent with the reported function. The other 28 correctly 

assigned proteins are enzymes and their SVMProt predicted EC class matches with the 

corresponding EC number. 

 

Because these proteins have no homolog of known function in Swiss-Prot database 

based on PSI-BLAST search, our study suggests that SVMProt has a certain capability 

for providing useful hint about the functional class of novel proteins with no or low 

homology to known proteins, and this capability is not based on sequence similarity or 

clustering. The overall accuracy of 67.4% for the assignment of the novel bacterial 

proteins is smaller than that of 87% for the SVMProt functional class assignment of 

34,582 proteins that have at least one homolog of known function.  This indicates the 

sequence-similarity-independent nature of SVM protein classification.  

 

Several factors may affect the accuracy of SVMProt for functional characterization of 

novel bacterial proteins. One is the diversity of protein samples used for training 

SVMProt. It is likely that not all possible types of proteins, particularly those of 

distantly related members, are adequately represented in some protein classes. This can 

be improved along with the availability of more protein data. Not all distantly related 
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proteins of the same function have similar structural and chemical features. There are 

cases in which different functional groups, un-conserved with respect to position in the 

primary sequence, mediate the same mechanistic role, due to the flexibility at the active 

site 272. This plasticity is unlikely to be sufficiently described by the physicochemical 

descriptors currently used in SVMProt. Therefore, SVMProt in the present form is not 

expected to be capable of classification of these types of distantly related proteins.  

 

Some of the SVMProt functional classes are at the level of families and superfamilies 

that may include a broad spectrum of proteins. It has been shown that performance of 

SVM may not better than  HMM for distinguishing proteins in a superfamily, but may 

be more accurate with subfamily discrimination 31. Thus, the use of some large families 

and superfamilies as the basis for classification may affect the prediction accuracy of 

SVMProt to some extent. 

 

In this evaluation work, SVMProt shows a certain level of capability for predicting the 

functional class of a number of novel bacterial proteins. This suggests that SVMProt is 

potentially useful to a certain extent for providing useful hints about the function of 

distantly related proteins in the genomes of bacteria as well as in other organisms. 
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Table 5-5 Novel bacterial proteins, literature-described functional indications as suggested from experiment and/or sequence analysis, and 
SVMProt predicted functions. The SVMProt predicted functions are categorized in one of the three classes: The first class is M (matched), in 
which all of the literature-described functional indications are predicted. The second is PM (partially matched), in which some of the 
literature-described functional indications are predicted. The third is NM (not matched), in which No function predicted of the 
literature-described functions matched or were consistent with a predicted function. 

Protein  
[Swiss-Prot or 
NCBI accession 
number] 

Bacterium Literature Described Function (reference) Function characterized  by SVMProt (probability of Predictio
correct characterization P-value) 

n
status

AAC(2')-IC 
[P95219] 

Mycobacterium 
tuberculosis; 

Mycobacterium bovis

Aminoglycoside 2'-N-acetyltransferase (EC 2.3.1.-) 
341 

EC 2.7 Transferase of Phosphorus-Containing Groups 
(78.4%) 
EC 4.2 Carbon-Oxygen Lyase (58.6%) 

NM 

Nhe [P81242] Bacillus cereus. Non-hemolytic enterotoxin 105 kDa component 
(EC 3.4.24.-) 315 

EC 3.4. Hydrolases - Acting on peptide bonds 
(Peptidases) (99.0%) 
EC 3.1. Hydrolases - Acting on Ester Bonds (65.4%) 

M 

AAC(6') 
[P50858] 

Enterobacter 
aerogenes 

(Aerobacter 
aerogenes) 

Aminoglycoside N(6')-acetyltransferase type 1 
(EC 2.3.1.82) 316. 

EC 2.3 Acyltransferases (99.0%) 
EC 3.1.Hydrolases - Acting on Ester Bonds(86.8% ) 
EC2.7.Transferases-Transferring Phosphorus-Containing 
Groups (68.5%) 
EC 4.2. Carbon-Oxygen Lyases(62.2%) 
EC 4.1. Carbon-Carbon Lyases(58.6%) 
Outer membrane (58.6%) 

M 

ADP-ribosyltran
sferase [P14299]

Rhodospirillum 
rubrum ADP-ribosyltransferase(EC 2.4.2.37) 342 

Transmembrane (92.9%) 
EC 2.4. Glycosyltransferase (90.3%) 
Outer membrane (58.6%) 

M 

Limonene-1,2-e
poxide 
hydrolase 
[Q9ZAG3] 

Rhodococcus 
erythropolis.. Limonene-1,2-epoxide hydrolase (EC 3.3.2.8)343 

EC 3.3 Hydrolases - Acting on Ether Bonds (99.0%) 
EC 4.2. Carbon-Oxygen Lyases (71.3%) 
Transmembrane (62.2%) 
Outer membrane (58.6%) 

M 
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AhdA2cA1c 
[BAC65427.1] 

Sphingobium sp. 
strain P2 a salicylate 1-hydroxylase (EC 1.14.-.-)344 

EC 3.1. Hydrolase acting on Ester Bonds (82.2%) 
DNA-binding Protein (80.4%) 
Transmembrane (58.6%) 

NM 

Alginate lyase 
[Q59478] 

Klebsiella 
pneumoniae Alginate lyase(EC 4.2.2.3)345 

Transmembrane (96.4 %) 
EC 3.1. Hydrolases - Acting on Ester Bonds (78.4%) 
Outer membrane (58.6%) 

NM 

Alpha-clostripai
n [P09870] 

Clostridium 
histolyticum Clostridiopeptidase B (EC3.4.22.8 )317 EC 3.4. Peptidases (99.0%) 

TC 1.B. Beta-Barrel porin (58.6%) M 

Alpha-N-AFase 
II [P82594] 

Streptomyces 
chartreusis Arabinosidase II (EC 3.2.1.55) 346 EC 3.4. Peptidase (91.3%) NM 

AMDASE 
[Q05115] 

Bordetella 
bronchiseptica 
(Alcaligenes 

bronchisepticus) 

Arylmalonate decarboxylase (EC 4.1.1.76) 318 

EC 4.1. Carbon-Carbon Lyases (99.0%) 
Transmembrane (93.6%) 
EC 1.1. Oxidoreductases - Acting on the CH-OH group 
of donors (68.5%) 
EC 4.2. Carbon-Oxygen Lyases (62.2%) 

M 

Aminopeptidase 
G [Q54340] Streptomyces lividans Aminopeptidase G(EC 3.4.11.-)319 

EC 3.4. Hydrolases - Acting on peptide bonds 
(Peptidases) (99.0%) 
TC 1.C. Pore-forming toxins (proteins and peptides) 
(58.6%) 

M 

Aminopeptidase 
[AAK69184.1] 

Sphingomonas 
capsulata

A novel aminopeptidase with unique substrate 
specificity, no significant homology to any known 
aminopeptidases  (EC3.4.-.-)347 

EC 3.5. Hydrolase acting on Carbon-Nitrogen Bonds, 
other than Peptide Bonds (78.4%) 
EC 1.1. Oxidoreductase acting on the CH-OH group of 
donors (76.2%) 
Outer membrane (58.6%) 
TC 1.B. Beta-Barrel porins (58.6%) 

NM 
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2-aminomuconat
e deaminase 
[P81593] 

Pseudomonas 
pseudoalcaligenes 2-aminomuconate deaminase (EC 3.5.99.5) 320 

EC 3.5. Hydrolase acting on Carbon-Nitrogen Bonds, 
other than Peptide bonds (99.0%) 
EC 3.4. Peptidase (58.6%) 

M 

Ammonia 
monooxygenase 
[Q04508] 

Nitrosomonas 
europaea Ammonia monooxygenase(EC 1.13.12.-)321 

EC 1.13. Oxidoreductases - Acting on single donors with 
incorporation of molecular oxygen (oxygenases) (99.0%)
Transmembrane(99.0%) 
EC 2.4. Transferases - Glycosyltransferases (83.9%) 

M 

protein C5 
[Q9RSH3] 

Deinococcus 
radiodurans. Ribonuclease P protein component(EC 3.1.26.5 ) 348 

EC 3.1.Hydrolases - Acting on Ester Bonds (99.0%) 
RNA-binding Proteins (99.0%) 
rRNA-binding Proteins (78.4%) 
DNA-binding Proteins (62.2%) 
mRNA-binding Proteins (58.6%) 
TC 1.A. Alpha-Type channels (58.6%) 

M 

AmpE protein 
[P13017] 

Escherichia coli ;  
Shigella flexneri 

an integral membrane protein with a likely 
ATP-binding site between the second and third 
putative transmembrane region 340 

Transmembrane (99.0%) 
7 transmembrane receptor (Odorant receptor) (58.6%) M 

Esterase 
precursor 
[P22266] 

Streptomyces 
scabies. Esterase precursor (EC 3.1.1.-)323 

EC 3.1. Hydrolases - Acting on Ester Bonds (99.0%) 
Transmembrane (86.8%) 
EC 3.4. Hydrolases - Acting on peptide bonds 
(Peptidases) (62.2%) 

M 

Beta-agarase B 
[P48840] 

Vibrio sp. (strain 
JT0107) Beta-agarase B (EC 3.2.1.81)349 Outer membrane (58.6%) 

TC 1.B. Beta-Barrel porin (58.6%) NM 
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cehA  
[BAB85626.1] 

Rhizobium sp. strain 
AC100 a novel carbaryl hydrolase (EC 3.5.1.-)350 

EC 1.4. Oxidoreductases - Acting on the CH-NH2 group 
of donors (85.4%) 
Transmembrane (82.2%) 
EC 2.7. Transferases - Transferring 
Phosphorus-Containing Groups (73.8%) 
EC 6.4. Ligases - Forming Carbon-Carbon Bonds 
(65.4%) 

NM 

CM [P19080] Bacillus subtilis CM(EC 5.4.99.5)324 
EC 5.4. Intramolecular Transferase (99.0%) 
EC 4.2. Carbon-Oxygen Lyase (58.6%) 
Outer membrane (58.6%) 

M 

Curlin genes 
transcriptional 
activatory 
protein 
[P24251] 

Escherichia coli Curlin genes transcriptional activatory protein351 EC 2.7. Transferases - Transferring 
Phosphorus-Containing Groups (78.4%) NM 

Cytochrome c 
oxidase 
polypeptide IV  
[P30815] 

Paracoccus 
denitrificans Cytochrome c oxidase polypeptide IV (EC 1.9.3.1)325 

EC 1.9 Oxidoreductase of a heme group of donors 
(97.0%) 
Envelope protein (58.6%) 
Transmembrane (58.6%) 

M 

2-dehydro-3-deo
xygalactonokina
se [P31459] 

Escherichia coli 2-dehydro-3-deoxygalactonokinase (EC 2.7.1.58)327 

EC 2.7. Transferases - Transferring 
Phosphorus-Containing Groups (99.1%) 
EC 2.3. Transferases - Acyltransferases (76.2%) 
EC 4.1. Carbon-Carbon Lyases(65.4% ) 
EC 4.2. Carbon-Oxygen Lyases (58.6%) 

M 

DNA 
polymerase III, 
theta subunit 
[P28689] 

Escherichia coli; 
Shigella flexneri DNA polymerase III, theta subunit (EC 2.7.7.7)326 

EC 2.7 Transferase of Phosphorus-Containing Groups 
(99.0%) 
EC 4.2 Carbon-Oxygen Lyase (58.6%) 

M 

Extracellular 
lipase[P40600] 

Aeromonas 
hydrophila Triacylglycerol lipase (EC 3.1.1.3)328 

EC 3.1. Hydrolase acting on Ester Bonds (99.0%) 
EC 1.3. Oxidoreductase acting on the CH-CH group of 
donors (65.4%) 
Outer membrane (58.6%) 
TC 1.B. Beta-Barrel porin (58.6%) 

M 
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Extracellular 
serine protease  
[P19577] 

Bacteroides nodosus 
(Dichelobacter 

nodosus) 
Extracellular serine protease (EC 3.4.21.-)329 EC 3.4. Peptidase (99.0%) 

TC 1.C. Pore-forming toxins (62.2%) M 

flp-1 
[Q9ANW5] 

Actinobacillus 
actinomycetemcomit

ans 

Associated with the bacterial cell surface and smaller 
structures, involved in fibril formation and cell 
adherence330 

Cell adhesion (58.6%) 
Outer membrane (58.6%) 
Seven transmembrane receptor secretin family(58.6%) 

PM 

Glycosyl 
transferase alg8 
[Q887P9] 

Pseudomonas 
syringae (pv. tomato) Glycosyl transferase alg8 (EC 2.4.1.-)352 Transmembrane (99.0%) 

EC 2.4 Glycosyltransferase (98.6%) M 

HbpA  
[AAK68926.1] Treponema denticola iron-regulated 44-kDa outer membrane protein 

(HbpA) with hemin binding ability353 

EC 3.4. Peptidase (86.8%) 
EC 3.1. Hydrolase acting on Ester Bonds (62.2%) 
EC 1.7. Oxidoreductase acting on other nitrogenous 
compounds as donors (62.2%) 

NM 

Histidine protein 
kinase [Q88S61]

Lactobacillus 
plantarum Histidine protein kinase (EC 2.7.3.-)331 

EC 2.7. Transferases - Transferring 
Phosphorus-Containing Groups (91.3%) 
TC 2.C.Electrochemical Potential-driven transporters - 
Ion-gradient-driven energizers (73.8%) 
TC 3.A.Primary Active Transporters - 
P-P-bond-hydrolysis-driven transporters (73.8%) 

M 

Hypothetical 
protein BBB03 
[O50979] 

Borrelia burgdorferi 
(Lyme disease 

spirochete) 
Hypothetical protein BBB03 (EC 3.1.22.-)354 

EC 2.7 Transferase of Phosphorus-Containing Groups 
(88.1%) 
EC 3.4 Peptidase (86.8%) 
EC 2.3 Acyltransferase (71.3%) 
EC 4.1 Carbon-Carbon Lyase (65.4%) 

NM 

Monofunctional 
chorismate 
mutase precurs  
[P42517] 

Erwinia herbicola Monofunctional chorismate mutase precursor (EC 
5.4.99.5)332 

EC 5.4. Isomerases - Intramolecular Transferases 
(99.0%) M 

omp28 
[AAD51843.1] 

Porphyromonas 
gingivalis outer membrane protein355 No function predicted NM 

opcA 
[AAL67945.1] 

Neisseria 
polysaccharea outer membrane protein356 

EC 3.1 Hydrolase acting on Ester Bonds (82.2%) 
EC 4.2 Carbon-Oxygen Lyase (62.2%) 
Outer membrane (58.6%) 
TC1.B Beta-Barrel porin (58.6%) 

M 
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Phenol 
hydroxylase P4 
protein 
[P19733] 

Pseudomonas sp. 
(strain CF600) 

Phenol 2-monooxygenase P4 component 
(EC 1.14.13.7 )357 

EC 1.9. Oxidoreductase acting on a heme group of 
donors (78.4%) 
EC 3.4. Peptidase (58.6%) 
EC 4.1.Carbon-Carbon Lyase (58.6%) 

NM 

Phenylacetaldox
ime dehydratase 
[P82604] 

Bacillus sp. (strain 
OxB-1) Phenylacetaldoxime dehydratase (EC 4.2.1.-)358 

Transmembrane (98.2%) 
EC 3.4 Peptidase (96.4%) 
EC 3.3 Hydrolase of Ether Bonds (80.4%) 
EC 2.7 Transferase of Phosphorus-Containing Groups 
(73.8%) 

NM 

PNGase F 
Glycopeptide 
N-glycosidase 
N-glycanase  
[P21163] 

Flavobacterium 
meningosepticum 

(Chryseobacterium 
meningosepticum) 

Peptide-N(4)-(N-acetyl-beta-D-glucosaminyl)asparag
ine amidase F precursor  (EC 3.5.1.52)333 

EC 3.5 Hydrolase of non-Peptide Carbon-Nitrogen 
Bonds (99.0%) 
Beta-Barrel porin (58.6%) 

M 

Precorrin-6A 
reductase 
[P21920] 

Pseudomonas 
denitrificans Precorrin-6A reductase (EC 1.3.1.54)334 

EC 1.3. Oxidoreductases - Acting on the CH-CH group 
of donors (99.0%) 
EC 3.5. Hydrolases - Acting on Carbon-Nitrogen Bonds, 
other than Peptide Bonds (58.6%) 
Outer membrane (58.6%) 

M 

Putative 
cytochrome 
P450 128 
[Q59572] 

Mycobacterium 
tuberculosis Putative cytochrome P450 128 (EC 1.14.-.-)335 

EC 1.14. Oxidoreductases - Acting on paired donors with 
incorporation or reduction of molecular oxygen (99.0%) 
EC 2.3. Transferases – Acyltransferases(86.8%) 
EC 4.1. Carbon-Carbon Lyases(85.4% ) 
EC 4.2. Carbon-Oxygen Lyases (83.9%) 

M 

Slt35  
[P41052] Escherichia coli Membrane-bound lytic murein transglycosylase B 

(EC 3.2.1.-) 359 

Outer membrane (99.0%) 
EC 1.1. Oxidoreductase acting on the CH-OH group of 
donors (89.3%) 
EC 4.1. Carbon-Carbon Lyase (62.2%) 

NM 

Thiocyanate 
hydrolase beta 
subunit  
[O66186] 

Thiobacillus 
thioparus Thiocyanate hydrolase beta subunit (EC 3.5.5.8)336 

EC 3.5 Hydrolase of non-Peptide Carbon-Nitrogen 
Bonds (98.9%) 
EC 2.6 Transferases of Nitrogenous Groups (62.2%) 

M 
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Thiaminase I 
[Precursor] 
[P45741] 

Paenibacillus 
thiaminolyticus 

(Bacillus 
thiaminolyticus). 

Thiaminase I precursor  (Thiamine 
pyridinylase)( EC 2.5.1.2) 337 

EC 2.5. Transferases - Transferring Alkyl or Aryl 
Groups, Other than Methyl Groups (99.0%) 
EC 2.7. Transferases of Phosphorus-Containing Groups 
(94.7%) 
Transmembrane (90.3%) 

M 

DNA AGT 
[P04519] Bacteriophage T4. DNA alpha-glucosyltransferase  (EC 2.4.1.26) 246 

EC 2.4. Glycosyltransferases (80.4%) 
EC 2.7. Transferases - Transferring 
Phosphorus-Containing Groups (68.5%) 

M 

Hydroxyneurosp
orene 
dehydrogenase 
[Q9F723] 

Chlorobium tepidum. Hydroxyneurosporene dehydrogenase (EC 1.-.-.-) 360 EC 4.1.Carbon-Carbon Lyases (65.4%) NM 

Type II 
restriction 
enzyme ScaI 
[O52691] 

(R.ScaI).Streptomyce
s caespitosus. 

Type II restriction enzyme ScaI  (Endonuclease 
ScaI) (EC 3.1.21.4) 338 

EC 3.1. Hydrolases acting on Ester Bonds (99.0%) 
TC 1.C Pore-forming toxins(proteins and peptides) 
(58.6%) 

M 

ATP synthase C 
chain [P15014] 

Rhodospirillum 
rubrum. 

ATP synthase C chain (Lipid-binding protein) 
(EC 3.6.3.14) 339 

EC 3.6. Hydrolases acting on Acid Anhydrides (99.0%) 
Transmembrane (58.6%) M 
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6. Prediction of Protein Inhibitors by Statistical 
Learning Approach, HIV-1 Protease as a case 
study 

The in depth understanding of the drug-target interaction mechanism and rapid 

advances in biochemistry and organic chemistry lead to the advent of computer aided 

drug design52-55, 361-364, which aims to help the rapid and efficient discovery of drug 

leads. Existing computational investigations mostly focused on how to improve the 

interaction between protease and inhibitor. One approach is to simulate HIV-1 protease 

with a substrate by finding if there is a stable energy minimum by molecular 

dynamics365-367 or docking368. Another method to speed up the PI development process 

is the identification of PIs in the early stage of drug discovery using statistical learning 

methods. As such, drug candidates that are not involved in protease inhibition can be 

eliminated earlier and the cost effectiveness of the drug discovery process can be 

improved. In a study by Patankar and Jurs58, radial basis function neural networks were 

used for classify HIV-PI. The model was trained with a limited set of only 123 

compounds and tested using 12 compounds. Although the predictive ability was in the 

high 80% range for the external prediction set, the model is not robust due to the small 

representation of compounds and statistically insignificant prediction set.  

In this study, support vector machine is implemented for HIV-1 protease inhibitors 

exploration by using new strategy and more comprehensive data set. 

6.1. Methods 

6.1.1. HIV-1 Protease Inhibitors 

An accurate SVM classification model requires large number of examples for both 

protease inhibitors and non-inhibitors. In this study, HIV-1 PIs are selected from the 
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HIV/OI Enzyme Inhibition Database of the National Institute of Allergy and Infectious 

Diseases (National Institutes of Health). The diversity analysis is based on the chemical 

family information that is obtained from the same data source. In our collected HIV 

protease inhibitors, 76.57% of them are peptide-based inhibitors and only 23.43% are 

non-peptide-based inhibitors. Among these peptide-based inhibitors, about 66%of 

them are peptidomimetics that are made up of a wide variety of compounds, and only 

about 5% are symmetry-based inhibitors.  

Peptidomimetics can be described as compounds derived from peptides and proteins 

and are obtained by structural modification using unnatural amino acids, 

conformational restraints, isosteric replacement, cyclisation etc. The peptidomimetics 

bridge the gap between simple peptides and the nonpeptide synthetic structures and 

may be useful in delineating pharmacophores and in helping to translate peptides into 

small non-peptide compounds. Peptidomimetic is sometimes used in a broad sense to 

designate organic molecules mimicking some properties of peptide ligands369.They are 

the most common starting point for HIV-1 inhibitor drug development and have been 

designed to mimic the tetrahedral transition-state intermediate formed during the 

HIV-1 protease catalysis event. In this study, 57.18% of the total positive samples 

found were peptidomimetics. 

Although there is currently no non-peptide-based inhibitors reaching clinical trials, but 

there has been considerable interest in using non-peptide based compounds in HIV 

drug development. Thus, we also consider these non-peptidic inhibitors in this study. 

 

6.1.2. HIV-1 Protease non-Inhibitors 

 

The supervised statistical learning requires both substantial positive and negative 
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examples to develop a prediction model with a certain generalization potential. Thus, 

the selection of effective negative example should be considered seriously in terms of 

the distribution and effectiveness. 

In this work, Hierarchal Clustering is employed to analyze the compound distribution 

according to their descriptors. The comprehensive negative examples are chosen from 

the following conditions based on the distribution of positive examples: (1) They 

allocate in the chemical space not occupied by positive examples, (2) their structures 

must be sufficiently distinct from the positive samples, and (3) the distribution of the 

selected negative examples should be diverse enough to form an effective 

representation of negative examples within the chemical space.  To simulate the entire 

chemical space and figure out the distribution of positive examples within this space, a 

compound database* composed of 85,000 entries is constructed.  In this work, a total 

number of 12453 negative samples were selected to ensure data balance in the binary 

classification SVM model.  

6.1.3. Positive and negative samples quantity 

 

The use of comprehensive dataset for model training is required for developing a robust 

and reliable prediction system, in turn, a small sample size and range is inadequate in 

representing all chemical families of HIV-1 PIs and non-PIs, leading to biased learning 

and eventually poor accuracies.  

In terms of robustness, reliability and statistical significance, the SVM model 

developed in this work is a significant improvement from the previously reported work 

for the prediction of HIV protease inhibitor using radial basis function neural 

                                                        
* These compounds are selected from MDDR, ACD and ChemIDPlus, ChemFinder databases with 
available 3D structures
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networks58 due to the notably larger, and more diversified dataset size for both positive 

and negative samples. The number and distribution of data used in each set are shown 

in Figure 6-1. 

 

Figure 6-1 The distribution and number of samples in each set 
 

Total sample space 

Training set 
7000 compounds 

Testing set 
7291 compounds 

Independent 
evaluation set 

3424 compounds

3500 
positive 

compounds 

3500 
negative 

compounds

791 
positive 

compounds 

6500 
negative 

compounds 

1000 
positive 

compounds 

2424 
negative 

compounds 

 
 

6.2. Results and Discussion 

6.2.1. Self- consistence testing accuracy 

As shown in Table 6-1, The prediction sensitivity, specify and overall accuracy of the 

testing set are 80.7%, 94.1% and 92.7%respectively, which suggest the self consistency 

of the model. 

It is noticed that the prediction accuracy of HIV-1 PIs (sensitivity) is lower than the 

prediction accuracy of non-HIV-1 PIs (specificity) as shown in Table 6-1.  This may 

be explained by the smaller size of the positive sample dataset compared to that of the 

negative dataset. It has been known that SVM model based on unbalanced data  set 

tends to produce feature vectors that push the hyperplane towards the side with a 
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smaller number of data370. This can lead to reduced accuracy for the set either with a 

smaller number of samples or of less diversity. The higher prediction accuracy for 

non-PIs is likely the result of the availability of a more numerous and diverse set of 

samples as compared to the HIV-1 PIs due to the selection of one or few chemicals 

from each super family from the database. This enables SVM to perform a better 

statistical learning for recognition.  

 

Table 6-1 The prediction accuracy of the testing set. Predicted results are given in TP 
(true positive), FN (false negative), TN (true negative), FP (false positive), HIV-PIs 
prediction accuracy (TP/(TP+FN)), and Non-HIV-PIs prediction accuracy 
(TN/(TN+FP)). Number of positive or negative samples in the testing sets is TP+FN 
or TN+FP respectively. 
 

No.HIV-PIs No.Non-HIV-PIs examples Accuracies 

TP FN TN FP HIV-PIs Non-HIV-PIs Overall Accuracy 

638 153 6118 382 80.66% 94.12% 92.66% 

 

A direct comparison with results from an earlier study is impractical because of 

differences in the quantity and quality of data, molecular descriptors and classification 

methods and algorithms used. Nonetheless, a rough comparison with Patankar and 

Jurs’s work58 on HIV PI prediction by using neural networks shows that our approach 

improved the testing accuracy from the 80% to 92%. 

6.2.2. Independent evaluation 

The optimal separating hyperplane was constructed after the training process and it was 

subjected to further evaluation using an independent dataset that does not overlap with 

that which was used for model training and testing. The independent evaluation is 

aimed to show the potential of the model’s generalization abilities. The independent 

evaluation results are as summarized in Table 6-2. 
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Table 6-2 The results of independent evaluation. Predicted results are given in TP 
(true positive), FN (false negative), TN (true negative), FP (false positive), HIV-PIs 
prediction accuracy (TP/(TP+FN)), and Non-HIV-PIs prediction accuracy 
(TN/(TN+FP)). Number of positive or negative samples in the testing sets is TP+FN 
or TN+FP respectively. 

 

No.HIV-PIs No.Non-HIV-PIs examples Accuracies 

TP FN TN FP HIV-PIs Non-HIV-PIs Overall Accuracy 

989 11 2334 90 98.90% 96.29% 97.05% 

 

The prediction accuracies for positive samples, negative samples and overall sample set 

are in the range from 96.29% to 98.90%. This suggests that the classification model is 

quite reliable in terms of the prediction accuracies.  

The positive sample prediction accuracy (sensitivity) of the independent evaluation set 

was 98.90%, where only 11 samples were incorrectly predicted out of 1000. One of the 

possible reasons is that not all individual compound sub-groups have the same 

accuracies, and further knowledge of this might be of help to provide a way to improve 

the overall accuracy of the model. The prediction accuracy for each chemical family is 

shown in Table 6-3. It was found that there are indeed a few groups that have good 

accuracies, such as amines, peptides, peptidomimetics and inhibitors without any 

specified class have precision of 100.00%. The prediction accuracy of non-peptides is 

also at the high-value rage between 90% and 97.30%. The groups with the lowest 

sensitivities are amides and symmetry-based inhibitors, with only 80.00% and 93.48% 

respectively. It was noted that the sample size for amides is small, and this sensitivity 

may not be representative of the true prediction power of the model when more samples 

are given. The sensitivity of the amides group in the testing set is 62.96% (18/27). The 

amides make up only 3.25% of the total positive sample size used. The relative lack of 
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samples in this group may be inadequate to represent all compound subtypes in the 

family, leading to biased learning and poor accuracies eventually. The future inclusion 

of newly found amide protease inhibitors in SVM model training is likely to increase 

the accuracy. The same reason applies to the symmetry-based inhibitors, which only 

make up 3.84% of the training sample. 

 

 

Table 6-3 The sensitivity of individual groups of compounds in the independent 
evaluation set 

Chemical class Sensitivity 
(Number of true positive/total number of compound) 

Amides 80.00% (4/5) 

Amines 100.00% (10/10) 

Non-peptides 97.30% (252/259) 

Peptides 100.00% (15/15) 

Peptidomimetics 100.00% (658/658) 
Symmetry-based 

inhibitors 93.48% (43/46) 

Unspecified 100.00% (7/7) 

Overall average 98.90% (989/1000) 

 

6.2.3. Recursive Feature Elimination 

As introduced previously in Chapter 1.4, the feature selection provides the insight for 

discriminating the positive and negative examples. In this study, the non-linear 

recursive feature elimination (RFE) method was used to select the 20 predominant 

features for discriminating HIV PIs and non-HIV PIs. 

6.2.3.1. Selected significant features by RFE 

Table 6-4 gives the list of RFE-selected descriptors for HIV-1 PI classification in the 

order of importance, with the most significant feature on top.  
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As shown in Table 6-4, half of the important features selected by RFE methods are 

simple molecular connectivity chi indices, such as topological descriptors, which 

represent how constituent atoms are interconnected in the molecule. Three other 

molecular shape kappa indices quantitative the molecular structure from its shape. 

Besides, simple molecular properties related to electrostatic interaction such as the 

number of hydrogen atoms and the number of H-bond donors and acceptors are also 

show certain importance. The remaining dominant features are molecular weight, Kier 

molecular flexibility index, number of rotatable bonds and the number of rings – which 

dictates the rigidity of the inhibitors. This is consistent with a previous comparative 

quantitative structure activity relationship (QSAR) study371 of inhibitory activity of 

HIV-1 protease inhibitor model. They suggested that topological, molecular 

connectivity, and kappa shape indices were important for binding. These features were 

interpretable as hydrogen bond donating ability, non-polar groups, skeletal branching, 

and molecular globularity.  

Table 6-4 Molecular descriptors selected by the RFE method for the classification of 
HIV-1 PIs 
Descriptor 

selected Description Class 

3χCH
Simple molecular connectivity chi indices for cycles 
of 3 atoms 

Connectivity and shape 

1κ 
 

Molecular shape kappa indices for one bond fragment Connectivity and shape 

0χ Simple molecular connectivity chi indices for path 
order 0 

Connectivity and shape 

3χC Simple molecular connectivity chi indices for cluster Connectivity and shape 
nrot Number of rotatable bonds Simple molecular properties

1χ Simple molecular connectivity chi indices for path 
order 1 

Connectivity and shape 

5χCH
Simple molecular connectivity chi indices for cycles 
of 5 atoms 

Connectivity and shape 

2χ Simple molecular connectivity chi indices for path 
order 2 

Connectivity and shape 

ndonr Number of H-bond donors Simple molecular properties
4χCH

Simple molecular connectivity chi indices for cycles 
of 4 atoms 

Connectivity and shape 

3κ Molecular shape kappa indices for 3 bond fragments Connectivity and shape 
4χPC

Simple molecular connectivity chi indices for 
path/cluster 

Connectivity and shape 

6χCH Simple molecular connectivity chi indices for cycles Simple molecular properties
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of 6 atoms 
nhyd Count of hydrogen atoms Simple molecular properties
phi Kier molecular flexibility index Connectivity and shape 

naccr Number of H-bond acceptors Simple molecular properties
W mol Molecular weight Simple molecular properties

3χP
Simple molecular connectivity chi indices for path 
order 3 

Connectivity and shape 

2κ Molecular shape kappa indices for 2 bond fragments Connectivity and shape 
nring Numbers of rings Simple molecular properties

 

 

From the RFE study, the absence of electrophilicity descriptors in the dominant feature 

list indicated that the importance of hydrophobicity is superseded by that of simple 

molecular properties, molecular connectivity, and kappa shape interactions. Our results 

suggest that the count of hydrogen atoms, the number of H-bond donors and acceptors 

are important to distinguish molecular descriptors of HIV-1 PIs.  These molecular 

properties contribute directly to the properties of quantum chemical descriptors such as 

electrophilicity, polarizability and molecular dipole moment. This is consistent with the 

finding that hydrogen bonding is extremely crucial in the enzyme-inhibitor 

interaction372. 

 

In this study, all topological descriptors found to be significant features are simple 

molecular chi indices.  The key concept in chi indices is the decomposition of the 

molecular graph into fragments of different size and complexity373. As half of the 

significant features obtained by REF are molecular connectivity descriptors, simple 

molecular connectivity chi indices for cycles of 3 atoms, path order 0, cluster, path 

order 1, cycles of 5 atoms, path order 2, cycles of 4 atoms, path/cluster, cycles of 6 

atoms, and path order 3 are shown to be important to discriminateHIV-1 PIs and 

non-PIs. This is as understandable because the peptide-based inhibitors form a major 

group compounds which are typically heavy, long chain, complex molecules with 
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many branch points and ring structures. Besides, the molecular topology for 

non-peptidic inhibitors is also intricate, such as carbohydrates, nucleoside conjugates, 

natural product and symmetry-based inhibitors have complicated structures with 

numerous rings and branch points. The difference in the complexity of molecules might 

cause the significant difference in their distinctive indices. 

Apart from the molecular connectivity descriptors, molecular shape kappa indices for 

one, two, and three bonded fragments are found in the RFE-selected feature list. The 

kappa shape indices are the basis of a method of molecular structure quantization. In 

this study, the importance of Kier molecular shape indices suggests that HIV-1 protease 

is highly specific for their substrate in terms of their shape. The inhibitors of an enzyme 

should be of similar shape and chemical nature as the substrate in order to align 

properly with the active site and bind tightly to it. This approach has been widely used 

to design inhibitors for diverse enzymatic targets, including HIV-1 protease374.  

Our results also revealed that the number of rotatable bonds, number of rings, Kier 

molecular flexibility index, and molecular weight have important contributions to 

discriminated PIs and non-PIs. The Kier molecular flexibility index is a descriptor 

based on structural properties that restrict a molecule from being "infinitely flexible", 

the model for which is an endless chain of C (sp3) atoms. The structural features 

considered to prevent a molecule from attaining infinite flexibility are: (a) fewer atoms, 

(b) the presence of rings, (c) branching, and (d) the presence of atoms with covalent 

radii smaller than those of C (sp3)375.  

6.2.3.2. Prediction accuracy by using selected significant features 

The elimination of irrelevant molecular descriptors greatly reduced the computation 

costs. More importantly, the removal of noise-generating features could improve the 
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accuracy of SVM models in some cases376. In this work, the testing sensitivity is 

improved from 80.66% to 84.70% by using the selected 20 features. The specificity and 

overall accuracy are comparable to that utilizing all of the features, with a slight 

decrease from 94.12% to 93.40% and 92.66% to 92.40% respectively.  

6.3. Conclusion remark 

This work has lead to a robust and intelligent classification system for predicting 

HIV-PIs with accuracies in the range of 90%s. As the basis of a statistical learning 

method, the significant number and diversity of the positive and negative datasets 

confer statistical significance to the results. Recursive feature elimination coupled 

Support Vector Machines was successfully employed in the automated selection of 

relevant molecular descriptors and noise reduction. 

 

145 



Chapter 7 Conclusion 

7. Conclusion 

7.1. Protein functional class prediction  

As the gap between the large amounts of sequences information and their function 

characterization is continuously increasing3, 4, efforts has been directed in development 

of methods for probing protein functions. It is difficult to predict protein functions 

solely based on the sequence similarity if the protein sequence is dissimilar to the 

sequence. Moreover, the sequence similarity may not able to distinguish the protein 

functions for homologous proteins with different functions. Thus, it is desirable to 

explore methods that are not based on sequence similarity.  

One of the main purposes of this study is to develop a prediction system that is able to 

classify proteins into functional classes based on primary sequence by statistical 

learning approach – Support Vector Machines. The classification system is designed to 

be able to assign functional families from proteins’ primary sequence irrespective 

sequence similarity. Protein classification problems such as enzymes classification, 

transporters classification and RNA-binding proteins classification are studied and the 

classification models are further evaluated by using independent evaluation sets.  

The SVMProt protein functional class prediction system was build on the basis of 

above described optimized classifiers. SVMProt has increased to 97 protein functional 

classes as listed in Appendix Table A. The functional classes of SVMProt include 46 

enzyme families, 9 channel/transporter families, 21 transporter families, 4 

RNA-binding protein families, DNA-binding proteins, 5 G-protein coupled receptors, 

nuclear receptors, Tyrosine receptor kinases, cell adhesion proteins, coat proteins, 

envelope proteins, outer membrane proteins, structural proteins, and growth factors.  

The independent evaluation of the functional classes in SVMProt showed that the 
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prediction accuracy for proteins belonging to a functional family was greater than 70% 

for 53 families, and 53%~70% for the remaining 19 families. The accuracy for proteins 

outside the given functional family was 82%~100% for all families. These accuracies 

are comparable to that from other SVM studies of proteins in terms of accuracies 

obtained in evaluation, such as G-protein coupled receptor classification31 and Protein 

fold prediction 47. The results of this work either revealed that substantial portions of 

misclassified proteins are with low similarity to most members in its family, or 

described as hypothetical, probable and putative. These findings indicate that sequence 

distance and novelty have some influence on prediction accuracy. Besides, limited 

diversity of proteins for some families may also affect the prediction accuracies.  

 

Novel proteins such as novel enzymes, novel bacterial proteins, viral proteins and novel 

plant proteins are selected and evaluated by our developed protein function prediction 

system.  The evaluation accuracy is in the range of 67~ 85%, it is suggested that the 

prediction system is useful for protein functional family assignment of distantly related 

proteins in the genomes of bacteria, virus as well as in other organisms and major 

functional groups such as enzymes. 

 

The approach employed in this work is to classify proteins into functional classes. 

Some of functional classes are at the level of families and super families that may 

include a broad spectrum of proteins. Although the results of this study showed that the 

SVM prediction system may not work as well as HMM for distinguishing proteins in a 

super family, it may be more accurate with subfamily discrimination 31. Thus, the use of 

some large families and super families as the basis for classification may affect the 
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prediction accuracy of SVMProt to some extent. The prediction accuracy and 

prediction confidence level could be further improved by incorporating the domain 

based or multiple sequence alignment based approach with the SVM approach outlined 

in this study. Because the advantages of SVM in predicting function of novel proteins 

and advantages of sequence similarity based methods in probing functions from 

homology proteins could complement each other, the new combined prediction system 

may be an improvement in terms of prediction accuracy and prediction confidence. 

Another issue is that the development of classifier for each protein functional family 

needs a certain number of representative examples. Only those protein functional 

classes with enough positive examples could be implemented in the classification 

system developed in this work. Although one can still build the SVM classifier based 

on the limited positive examples, the problem of data imbalance may be critical as it 

would affect the accuracy of a SVM classification system233. Thus, approaches to solve 

the data imbalance problem properly are necessary for further improvements in protein 

functional family coverage. In addition, improvements in SVM algorithm, reliable 

protein sample collection, distribution analysis on both positive and negative examples, 

and a more comprehensive and refined set of protein descriptors may enable the 

development of this prediction system into a practical and mature tool for facilitating 

functional study of unknown function proteins. 

 
 

7.2. Prediction of protein inhibitors 

As the problem of rapid resistance development and physiological side effects remain 

in current use of HIV-1 protease inhibitors for anti-HIV therapies, methods for 

facilitating early elimination of potential HIV-1 protease inhibitors are useful for 
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speeding up new drug discovery in the battle with HIV infections. In this study, 

addition to the applications in functional families’ calcification and prediction, support 

vector machine also show the potential in the application of HIV-1 protease inhibitors 

exploration. A set of 4291 inhibitors and 10000 non-inhibitors are selected to train and 

test an SVM classification system. This gave a prediction accuracy of 97.05% for an 

independent evaluation set composed of 1000 PIs and 2424 non-PIs. This shows that 

the classification model developed during the training, testing and independent 

evaluation process is self-consistent and has certain capable in the selection of probable 

HIV-1 PI candidates for further experimentation and assay.  Recursive feature 

selection method is employed to select significant descriptors and it was shown that 

molecular connectivity and shape, flexibility and hydrogen bond interactions are 

among the most distinguishing features for discriminating HIV-1 protease inhibitors.  

In order to get the insight from the significant features for discriminating the PIs and 

non-PIs, Recursive feature selection method is employed. The results of feature 

elimination show that half of the important features sleeted by RFE methods are 

molecular topological descriptors, molecular properties related to electronic interaction 

such as the number of hydrogen atoms and the number of H-bond donors and acceptors, 

and some other global properties such as molecular weight, rigidity (Kier molecular 

flexibility, number of rotatable bonds and the number of rings etc). which is consistent 

with a previous comparative quantitative structure activity relationship (QSAR) study 

of inhibitory activity of HIV-1 protease inhibitor model 371.  

In conclusion, The results of this study indicated that the statistical learning approach 

was useful for protein inhibitors prediction, the methods implemented in this work 

could be extended to other fields in drug discovery and effort could be brought to the 

development new HIV PIs as well as new drug leads. 
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Future work entails further refinement of the SVM model through the inclusion of the 

most recently discovered HIV-PIs and the improvement of SVM algorithms, as well as 

compliment with other approaches for aiding in inhibitors prediction. As suggested in 

this study, SVM coupled with RFE is potentially useful as a classifier for facilitating 

the prediction of HIV-1 PIs. The introduction of weighted function into SVM-RFE is 

expected to improve the accuracy of the model. Moreover, a comprehensive collection 

of available compound is important for the compound diversity analysis. Qualified 

collection of positive examples and representative negative examples are the keys for 

developing model with generalization power.  
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Appendices 

APPENDICES 

Appendix A：List of protein families currently covered by SVMProt, statistics of datasets and prediction results***.  

Training set Testing set Independent evaluation set 
positive negative positive negative Protein family 

positive negative
TP FN TN FP TP FN Sensitivity TN FP Specificity

EC1.1 Oxidoreductases acting on the CH-OH group of 
donors 1164 2324 1795 10 7594 14 494 105 82.5% 4760 192 96.1%

EC1.2 Oxidoreductases acting on the aldehyde or oxo 
group of donors 665 1960 705 14 8051 25 259 69 79.0% 4908 77 98.5%

EC1.3 Oxidoreductases acting on the CH-CH group of 
donors 491  1917 131 3 8090 17 73 37 66.4% 4941 57 98.9%

EC1.4 Oxidoreductases acting on the CH-NH2 group of 
donors 307     1869 92 2 8179 8 50 26 65.8% 4990 26 99.5%

EC1.5 Oxidoreductases acting on the CH-NH group of 
donors 276     1755 56 3 8278 5 41 29 58.6% 4985 21 99.6%

EC1.6 Oxidoreductases acting on NADH or NADPH 1333 2132 2189 21 7857 19 1118 65 94.5% 4901 88 98.2%
EC1.7 Oxidoreductases acting on other nitrogenous 
compounds as donors 170     1356 86 0 8703 2 29 15 65.9% 5005 13 99.7%

EC1.8 Oxidoreductases acting on a sulfur group of 
donors 299  1531 114 2 8500 13 40 28 58.8% 4989 20 99.6%

EC1.9 Oxidoreductases acting on a heme group of 
donors 561  807 9493 22 9246 24 4805 36 99.3% 4978 48 99.0%

EC1.10 Oxidoreductases acting on diphenols and 
related substances as donors 219     1348 88 0 8728 4 65 20 76.5% 4996 30 99.4%

EC1.11 Oxidoreductases acting on a peroxide as 
acceptor 344     1416 343 2 8664 5 146 22 86.9% 5009 22 99.6%

                                                        
*** Predicted results are given in TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sensitivity (TP/(TP+FN)), and 
Specificity(TN/(TN+FP)). Number of positive or negative samples in testing and independent evaluation sets is TP+FN or TN+FP respectively 
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EC1.13 Oxidoreductases acting on single donors with 
incorporation of molecular oxygen (oxygenases) 152     1232 90 7 8832 4 29 23 55.8% 5009 13 99.7%

EC1.14 Oxidoreductases acting on paired donors with 
incorporation reduction of molecular oxygen 566     1896 786 0 8120 8 93 38 71.0% 4941 57 98.9%

EC1.15 Oxidoreductases acting on superoxide as 
acceptor 259      881 416 2 9214 7 222 18 92.5% 5019 20 99.6%

EC1.17 Oxidoreductases acting on CH2 groups 100 1308 109 4 8779 8 43 12 78.2% 5026 9 99.8%
EC1.18 Oxidoreductases acting on iron-sulfur proteins 
as donors 244     1229 232 1 8842 8 78 7 91.8% 5005 22 99.6%

EC2.1 Transferases transferring one-carbon groups 1509 2991 800 0 6903 2 190 89 68.1% 4194 740 85.0%
EC2.2 Transferases transferring aldehyde or ketone 
residues 35    1197 30 2 1121 0 26 5 83.9% 1005 3 99.7%

EC2.3 Acyltransferases  302 1001 246 0    1284 4 196 44 81.7% 966 27 97.3%
EC2.4 Glycosyltransferases 945 1896 1211 25 7940 41 203 85 70.5% 4640 286 94.2%
EC2.5 Transferases transferring alkyl or aryl groups, 
other than methyl groups 764 2174 519 24 7832 33 137 58 70.3% 4915 93 98.1%

EC2.6 Transferases transferring nitrogenous groups 343 1684 301 5 8395 6 75 32 70.1% 4982 49 99.0%
EC2.7 Transferases transferring phosphorus-containing 
groups 3892 5324 3761 4    6140 6 2463 553 81.7% 5082 625 89.0%

EC2.8 Transferases transferring sulfur-containing 
groups 203     1549 43 0 8531 7 20 10 66.7% 5021 11 99.8%

EC3.1 Hydrolases acting on ester bonds 2482 3859 1504 53 5677 100 379 154 71.1% 4355 452 90.6%
EC3.2 Glycosylases  337     867 379 2 1397 13 268 49 84.5% 939 51 94.8%
EC3.3 Hydrolases acting on ether bonds 97 1999 44 22 8053 49 32 22 59.3% 5007 32 99.4%
EC3.4 Hydrolases acting on peptide bonds (Peptidases) 2011 3402 1522 35 6207 29 264 90 74.6% 4528 279 94.2%
EC3.5 Hydrolases acting on carbon-nitrogen bonds, 
other than peptide bonds 1020 2498 440 2    7447 3 130 85 60.5% 4849 110 97.8%

EC3.6 Hydrolases acting on acid anhydrides     2195 2504 1449 1 7435 4 687 63 91.6% 4742 220 95.6%
EC4.1 Carbon-carbon lyases  546 1145 776 5   1113 17 547 62 89.8% 881 105 89.4%
EC4.2 Carbon-oxygen lyases       505 1231 382 1 1047 2 324 79 80.4% 915 77 92.2%
EC4.3 Carbon-nitrogen lyases  218     1068 194 2 9009 8 29 10 74.4% 4994 37 99.3%
EC4.4 Carbon-sulfur lyases  182 1999 53 23 8072 14 35 23 60.3% 5024 7 99.9%
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EC4.6 Phosphorus-oxygen lyases  200 1789 63 14 8250 7 55 27 67.1% 4112 899 82.1%
EC5.1 Racemases and Epimerases    379 1796 91 4 198249 35 31 53.0% 4990 30 99.4%
EC5.2 Cis-trans-Isomerases  35 1404 113 2 8671 11 72 36 66.7% 5008 24 99.5%
EC5.3 Intramolecular oxidoreductases       461 1122 92 3 1062 0 135 43 75.8% 4910 99 98.0%
EC5.4 Intramolecular transferases  329 1714 143 4 8337 16 42 35 54.5% 4991 31 99.4%
EC5.5 Intramolecular lyases  47 909 24 0 9196 0 75 32 70.1% 4982 49 99.0%
EC5.99 Other Isomerases  163 1038 393 8    9036 9 153 13 92.2% 5007 22 99.6%
EC6.1 Ligases forming carbon-oxygen bonds   281 1115 381 1 1185 28613 29 90.8% 980 27 97.3%
EC6.2 Ligases forming carbon-sulfur bonds 149     1233 154 4 8858 4 51 13 79.7% 5203 13 99.8%
EC6.3 Ligases forming carbon-nitrogen bonds      381 1133 358 2 1148 3 294 57 83.8% 946 45 95.5%
EC6.4 Ligases forming carbon-carbon bonds 99 1543 45 0     8548 8 28 16 63.6% 5033 4 99.9%
EC6.5 Ligases forming phosphoric ester bonds 94 1679 36 2 8408 3 22 9 71.0% 5027 6 99.9%
TC1.A alpha-type channels 381 1786 272 8 10425 7 164 25 86.8% 6037 44 99.3%
TC1.B beta-barrel porins 221 2008 58 0 12452 2 65 27 70.7% 7178 29 99.6%
TC1.C Pore-forming toxins (proteins and peptides) 357 2007 33 14 12371 0 100 27 78.7% 6452 15 99.8%
TC1.E Holins  100 513 55 5 11837 14 55 15 78.6% 6151 4 99.9%
TC2.A porters (symporters, uniporters, antiporters) 629 1175 781 4 10938 13 370 54 87.3% 5945 90 98.5%
TC2.C Ion-gradient-driven energizers 166 1014 86 2 11325 10 91 28 76.5% 6140 13 99.8%
TC3.A P-P-bond-hydrolysis-driven transporters 1220 2549 1301 20 9568 89715 243 78.7% 5895 143 97.6%
TC3.D Oxidoreduction-driven transporters 435 1529 981 1 12980 5 617 60 91.1% 7197 36 99.5%
TC3.E Light absorption-driven transporters 139 954 696 5 13648 2 395 16 96.1% 7267 11 99.8%
TC4.A Phosphotransfer-driven group translocators  197 887 212 8 11429 5 153 32 82.7% 6120 21 99.7%
TC8.A Auxiliary transport proteins 223 1388 169 5 10925 13 124 43 74.3% 6120 15 99.8%
TC9.A Recognized transporters of unknown biochemical 
mechanism  203 1034 188 1 11247 29 130 35 78.8% 6085 43 99.3%

TC9.B Putative uncharacterized transport proteins  869 2079 581 5 10153 5 469 116 80.2% 6002 98 98.4%
G protein coupled receptors 927 1320 4993 5 13212 4 2421 111 95.6% 7104 140 98.1%
7 transmembrane receptor (rhodopsin family & 
chemoreceptor ) 729 1061 4604 7 13535 3 2223 71 96.9% 7214 61 99.2%

7 transmembrane receptor (secretin family) 218 2007 71 0 12580 1 117 12 90.7% 6900 370 94.9%
7 transmembrane receptor (metabotropic glutamate 
family) 116 2001 40 0 12613 0 62 7 89.9% 6975 308 95.8%
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7 transmembrane receptor (odorant receptor) 130 1999 11 0 12631 0 38 1 97.4% 7113 178 97.6%
DNA-binding proteins 3260 4251 4146 115 4914 73 2469 1114 68.9% 4065 464 89.8%
RNA-binding proteins 2161 2965 1844 6 6802 14 437 10 97.8% 4685 196 96.0%
mRNA-binding proteins 277 2106 129 0 10164 0 130 34 79.3% 5833 213 96.5%
rRNA-binding proteins 708 972 1243 2 9031 13 95 6 94.1% 4931 66 98.7%
tRNA-binding proteins 94 792 114 0 9295 2 48 3 94.1% 5028 5 99.9%
Structural proteins (Matrix protein,Core protein,Viral 
occlusion body,Keratin) 858 1353 4977 4 8512 12 2615 41 98.5% 4884 40 99.2%

Transmembrane 2105 2563 11135 1722 8237 1368 3054 335 90.1% 5254 809 86.7%
Outer membrane 602 1539 547 0 8384 1 318 25 92.7% 4276 672 86.4%
Cell adhesion 513 1678 322 1 8208 15 232 38 85.9% 4897 44 99.1%
Coat proteins 346 1474 297 8 8344 26 167 30 84.8% 4885 29 99.4%
Envelope proteins 177 1999 112 11 7904 28 135 15 90.0% 4927 25 99.5%
Nuclear receptors 334 538 601 7 1755 6 221 26 89.5% 962 24 97.6%
Tyrosine kinase receptors 14 1197 3 0 1121 0 5 2 71.4% 1006 2 99.8%
Growth factor 329 1320 205 5 8695 4 142 21 87.1% 4970 28 99.4%
Antigen 836 1867 1200 2 7786 8 720 29 96.1% 4747 74 98.5%
Chlorophyll 189 603 945 3 14630 10 515 14 97.4% 6965 11 99.8%
Chlorophyll biosynthesis 309 1742 109 0 13424 0 153 24 86.4% 6158 777 88.8%
Herbicide resistance 227 1999 205 7 13196 2 199 10 95.2% 6948 10 99.9%
Photoreceptor 354 1537 893 3 13611 11 548 42 92.9% 6896 26 99.6%
Photorespiration 368 1672 8197 4 13504 76 4257 13 99.7% 6955 24 99.7%
Photosynthesis 1054 1914 544 0 12950 47 613 44 93.3% 6664 132 98.1%
Photosystem I 264 1491 392 70 13726 1 326 8 97.6% 5900 1061 84.8%
Photosystem II 506 986 2018 4 14120 46 1192 31 97.5% 6890 36 99.5%
Plant defense 559 1830 456 5 13302 14 289 37 88.7% 6857 60 99.1%
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Appendix B: Distribution of RNA-binding proteins in different kingdoms and in 
top 10 host species of each kingdom. Not all protein sequences studied in this 
work are included because the host species information of some protein 
sequences is not yet available in the protein sequence database. 

 
Kingdom Eucaryote Eubacteria Archaea 
Number  
of proteins 
in 
kingdom 

986 1854 294 

Homo sapiens (168) Escherichia coli 
(75) 

Methanococcus 
jannaschii (22) 

Mus musculus (78) Bacillus subtilis 
(64) 

Methanobacterium 
thermoautotrophicum 
(21) 

Candida albicans (77) Haemophilus 
influenzae (60) 

Archaeoglobus fulgidus 
(20) 

Schizosaccharomyces 
pombe (52) 

Buchnera 
aphidicola (subsp. 
Acyrthosiphon 
pisum) (50) 

Halobacterium sp (19) 

Drosophila 
melanogaster (45) 

Helicobacter pylori 
(49) 

Pyrococcus horikoshii 
(19) 

Arabidopsis thaliana 
(42) 

Buchnera 
aphidicola (subsp. 
Schizaphis 
graminum) (47) 

Pyrococcus abyssi (18)

Xenopus laevis (30) Aquifex aeolicus 
(45) 

Sulfolobus solfataricus 
(18) 

Rattus norvegicus (28) Mycobacterium 
tuberculosis (45) Aeropyrum pernix (18)

Caenorhabditis elegans 
(26) 

Rickettsia 
prowazekii (44) 

Methanopyrus kandleri 
(15) 

List of top 
10 species 
and 
number of 
proteins in  
each 
species 

Porphyra purpurea (19) Mycoplasma 
pneumoniae (43) 

Thermoplasma 
volcanium (14) 
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