53 research outputs found
Ketoconazole induces reversible antifungal drug tolerance mediated by trisomy of chromosome R in Candida albicans
BackgroundThe emergence of tolerance to antifungal agents in Candida albicans complicates the treatment of fungal infections. Understanding the mechanisms underlying this tolerance is crucial for developing effective therapeutic strategies.ObjectiveThis study aims to elucidate the genetic and molecular basis of ketoconazole tolerance in C. albicans, focusing on the roles of chromosomal aneuploidy, Hsp90, and calcineurin.MethodsThe wild-type C. albicans strain SC5314 was exposed to increasing concentrations of ketoconazole (0.015–32 μg/mL) to select for tolerant adaptors. Disk diffusion and spot assays were used to assess tolerance. Whole-genome sequencing identified chromosomal changes in the adaptors. The roles of Hsp90 and calcineurin in maintaining and developing ketoconazole tolerance were investigated using specific inhibitors and knockout strains.ResultsAdaptors exhibited tolerance to ketoconazole concentrations up to 16 μg/mL, a significant increase from the parent strain’s inhibition at 0.015 μg/mL. All tolerant adaptors showed amplification of chromosome R, with 29 adaptors having trisomy and one having tetrasomy. This aneuploidy was unstable, reverting to euploidy and losing tolerance in drug-free conditions. Both Hsp90 and calcineurin were essential for maintaining and developing ketoconazole tolerance. Inhibition of these proteins resulted in loss of tolerance. The efflux gene CDR1 was not required for the development of tolerance. Chromosome R trisomy and tetrasomy induce cross-tolerance to other azole antifungal agents, including clotrimazole and miconazole, but not to other antifungal classes, such as echinocandins and pyrimidines, exemplified by caspofungin and 5-flucytosine.ConclusionKetoconazole tolerance in C. albicans is mediated by chromosomal aneuploidy, specifically chromosome R amplification, and requires Hsp90 and calcineurin. These findings highlight potential targets for therapeutic intervention to combat antifungal tolerance and improve treatment outcomes
Unified and Dynamic Graph for Temporal Character Grouping in Long Videos
Video temporal character grouping locates appearing moments of major
characters within a video according to their identities. To this end, recent
works have evolved from unsupervised clustering to graph-based supervised
clustering. However, graph methods are built upon the premise of fixed affinity
graphs, bringing many inexact connections. Besides, they extract multi-modal
features with kinds of models, which are unfriendly to deployment. In this
paper, we present a unified and dynamic graph (UniDG) framework for temporal
character grouping. This is accomplished firstly by a unified representation
network that learns representations of multiple modalities within the same
space and still preserves the modality's uniqueness simultaneously. Secondly,
we present a dynamic graph clustering where the neighbors of different
quantities are dynamically constructed for each node via a cyclic matching
strategy, leading to a more reliable affinity graph. Thirdly, a progressive
association method is introduced to exploit spatial and temporal contexts among
different modalities, allowing multi-modal clustering results to be well fused.
As current datasets only provide pre-extracted features, we evaluate our UniDG
method on a collected dataset named MTCG, which contains each character's
appearing clips of face and body and speaking voice tracks. We also evaluate
our key components on existing clustering and retrieval datasets to verify the
generalization ability. Experimental results manifest that our method can
achieve promising results and outperform several state-of-the-art approaches
Miconazole induces aneuploidy-mediated tolerance in Candida albicans that is dependent on Hsp90 and calcineurin
Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations
Genomes shed light on the evolution of Begonia, a mega‐diverse genus
Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with ~2,000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana, and B. peltatifolia), and whole genome shot-gun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22,059 - 23,444 protein-coding genes. Synteny analysis revealed a lineage specific whole-genome duplication (WGD) that occurred just before the diversification of the Begonia. Functional enrichment of gene families retained after WGD highlight the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade-adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade
The water lily genome and the early evolution of flowering plants
Water lilies belong to the angiosperm order Nymphaeales. Amborellales,
Nymphaeales and Austrobaileyales together form the so-called ANA-grade of
angiosperms, which are extant representatives of lineages that diverged the earliest
from the lineage leading to the extant mesangiosperms1–3. Here we report the
409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata).
Our phylogenomic analyses support Amborellales and Nymphaeales as successive
sister lineages to all other extant angiosperms. The N. colorata genome and 19 other
water lily transcriptomes reveal a Nymphaealean whole-genome duplication event,
which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes
retained from this whole-genome duplication are homologues of genes that regulate
flowering transition and flower development. The broad expression of homologues of
floral ABCE genes in N. colorata might support a similarly broadly active ancestral
ABCE model of floral organ determination in early angiosperms. Water lilies have
evolved attractive floral scents and colours, which are features shared with
mesangiosperms, and we identified their putative biosynthetic genes in N. colorata.
The chemical compounds and biosynthetic genes behind floral scents suggest that
they have evolved in parallel to those in mesangiosperms. Because of its unique
phylogenetic position, the N. colorata genome sheds light on the early evolution of
angiosperms.Supplementary Tables: This file contains Supplementary Tables 1-21.National Natural Science Foundation of China, the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW201909) and State Key Laboratory of Tree Genetics and Breeding, the Fujian provincial government in China, the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement and the Special Research Fund of Ghent University.http://www.nature.com/naturecommunicationsam2021BiochemistryGeneticsMicrobiology and Plant Patholog
Diffusion of Nitrogen and Phosphorus Across the Sediment-Water Interface and In Seawater at Aquaculture Areas of Daya Bay, China
With the yearly increasing marine culture activities in floating cages in Daya Bay, China, the effects of pollution may overlap and lead to more severe water environmental problems. In order to track the impacts of the marine culture in floating cages on water environment, sediments and overlying water were sampled by cylindrical samplers at three representative aquaculture areas of Daya Bay. The water content, porosity, density of sediments as well as the vertical distributions of ammonia nitrogen and active phosphate in pore water along sediments depth were measured. The release rate and annual released quantity of the nutrients across sediment-water interface were calculated using Fick’s Law. A horizontal two-dimensional mathematical model was developed to compute the spatial and temporal distributions of the nutrients in seawater after being released across the sediment-water interface. The results showed that the sediments, with a high content and a large annual released quantity of nitrogen and phosphorus, constitute a potential inner source of seawater pollution. Influenced by tide and water depth, the scope of diffusion and migration of the nutrients appears as a long belt which is about 1 km long and 50 m wide. Seawater in this area is vulnerable to eutrophication
Association of Long Non-Coding RNA HOTAIR Polymorphisms with Cervical Cancer Risk in a Chinese Population.
Long non-coding RNAs (lncRNAs), HOTAIR has been reported to be upregulated in cervical cancer development and progression. However, SNPs (single nucleotide polymorphisms) in the lncRNAs and their associations with cervical cancer susceptibility have not been reported. In the current study, we hypothesized that SNPs within the lncRNA HOTAIR may influence the risk of cervical cancer. We performed a case-control study including 510 cervical cancer patients (cases) and 713 cancer-free individuals (controls) to investigate the association between three haplotype-tagging SNPs (rs920778, rs1899663 and rs4759314) in the lncRNA HOTAIR and the risk of cervical cancer. We found a strong association between the SNP rs920778 in the intronic enhancer of the HOTAIR and cervical cancer (P<10-4). Moreover, the cervical cancer patients with homozygous TT genotype were significantly associated with tumor-node-metastasis (TNM) stage. In vitro assays with allele-specific reporter constructs indicated that the reporter constructs bearing rs920778T allele conferred elevated reporter gene transcriptional activity when compared to the reporter constructs containing rs920778C allele. Furthermore, HOTAIR expression was higher in cervical cancer tissues than that in corresponding normal tissues, and the high expression was associated with the risk-associated allele T. In summary, our studies provide strong functional evidence that functional SNP rs920778 regulates HOTAIR expression, and may ultimately influence the predisposition for cervical cancer
Effect of Steel Fibers on Tensile Properties of Ultra-High-Performance Concrete: A Review
Ultra-high-performance concrete (UHPC) is an advanced cement-based material with excellent mechanical properties and durability. However, with the improvement of UHPC’s compressive properties, its insufficient tensile properties have gradually attracted attention. This paper reviews the tensile properties of steel fibers in UHPC. The purpose is to summarize the existing research and to provide guidance for future research. The relevant papers were retrieved through three commonly used experimental methods for UHPC tensile properties (the direct tensile test, flexural test, and splitting test), and classified according to the content, length, type, and combination of the steel fibers. The results show that the direct tensile test can better reflect the true tensile strength of UHPC materials. The tensile properties of UHPC are not only related to the content, shape, length, and hybrids of the steel fibers, but also to the composition of the UHPC matrix, the orientation of the fibers, and the geometric dimensions of the specimen. The improvement of the tensile properties of the steel fiber combinations depends on the effectiveness of the synergy between the fibers. Additionally, digital image correlation (DIC) technology is mainly used for crack propagation in UHPC. The analysis of the post-crack phase of UHPC is facilitated. Theoretical models and empirical formulas for tensile properties can further deepen the understanding of UHPC tensile properties and provide suggestions for future research
LncRNA-HOTAIR rs920778 SNP T variant allele exhibits enhanced enhancer activity and increases HOTAIR expression.
<p><b>(A)</b> Enhancer activity are presented as fold increase relative to negative control (NC, empty vector PGL3). “**” indicates <i>P</i><0.01. Individuals with the risk allele T at rs920778 in both 38 normal cervical tissues <b>(B)</b> and 43 cervical cancer tissues <b>(C)</b> is significantly associated with increased HOTAIR expression than those with the CC genotypes. Expression levels of HOTAIR are detected by RT-PCR in cervical cancer tissues grouped to three genotypes (rs920778TT, rs920778CT or rs920778CC). “*” indicates <i>P</i><0.05. <b>(D)</b> RT-PCR analysis of HOTAIR expression levels in cervical cancer cell lines (SiHa, Hela and Caski) compared with breast cancer cell MCF-7 and human embryo kidney epithelial cell 293T. <b>(E)</b> The HOTAIR expression level was analyzed by RT-PCR in 91 cervical cancer tissue samples. HOTAIR expression levels was significantly upregulated in cervical cancer tissues compared with their matched non-tumor cervical cancer tissues (<i>P</i><0.05). T, tumor; N, no-tumor.</p
- …