2,348 research outputs found

    Vehicular Fog Computing Enabled Real-time Collision Warning via Trajectory Calibration

    Full text link
    Vehicular fog computing (VFC) has been envisioned as a promising paradigm for enabling a variety of emerging intelligent transportation systems (ITS). However, due to inevitable as well as non-negligible issues in wireless communication, including transmission latency and packet loss, it is still challenging in implementing safety-critical applications, such as real-time collision warning in vehicular networks. In this paper, we present a vehicular fog computing architecture, aiming at supporting effective and real-time collision warning by offloading computation and communication overheads to distributed fog nodes. With the system architecture, we further propose a trajectory calibration based collision warning (TCCW) algorithm along with tailored communication protocols. Specifically, an application-layer vehicular-to-infrastructure (V2I) communication delay is fitted by the Stable distribution with real-world field testing data. Then, a packet loss detection mechanism is designed. Finally, TCCW calibrates real-time vehicle trajectories based on received vehicle status including GPS coordinates, velocity, acceleration, heading direction, as well as the estimation of communication delay and the detection of packet loss. For performance evaluation, we build the simulation model and implement conventional solutions including cloud-based warning and fog-based warning without calibration for comparison. Real-vehicle trajectories are extracted as the input, and the simulation results demonstrate that the effectiveness of TCCW in terms of the highest precision and recall in a wide range of scenarios

    Phase structure of lattice QCD with two flavors of Wilson quarks at finite temperature and chemical potential

    Full text link
    We present results for phase structure of lattice QCD with two degenerate flavors (Nf=2N_f=2) of Wilson quarks at finite temperature TT and small baryon chemical potential μB\mu_B. Using the imaginary chemical potential for which the fermion determinant is positive, we perform simulations at points where the ratios of pseudo-scalar meson mass to the vector meson mass mπ/mρm_\pi/m_\rho are between 0.943(3)0.943(3) and 0.899(4)0.899(4) as well as in the quenched limit. By analytic continuation to real quark chemical potential μ\mu, we obtain the transition temperature as a function of small μB\mu_B. We attempt to determine the nature of transition at imaginary chemical potential by histogram, MC history, and finite size scaling. In the infinite heavy quark limit, the transition is of first order. At intermediate values of quark mass mqm_q corresponding to the ratio of mπ/mρm_\pi/m_\rho in the range from 0.943(3)0.943(3) to 0.899(4)0.899(4) at aμI=0.24a\mu_I=0.24, the MC simulations show absence of phase transition.Comment: 10 pages, 17 figures;16 figures;9 pages,10 figures;10 pages,11 figure

    Effects of Mountain Rivers Cascade Hydropower Stations on Water Ecosystems

    Get PDF
    China is rich in hydropower resources, and mountain rivers have abundant water resources and huge development potential, which have a profound impact on the pattern of water resources allocation in China. As the main way of water resources and hydropower development, the construction of cascade hydropower stations, while meeting the requirements of water resources utilization for social development, has also brought adverse effects on river ecosystems. Therefore, the impact of the construction of cascade hydropower stations on mountainous river ecosystems, where the minimum ecological flow of rivers must be ensured and reviewed. In addition, this paper proposed the deficiencies and outlooks for cascade hydropower stations based on previous research results

    On the Generation of Medical Question-Answer Pairs

    Full text link
    Question answering (QA) has achieved promising progress recently. However, answering a question in real-world scenarios like the medical domain is still challenging, due to the requirement of external knowledge and the insufficient quantity of high-quality training data. In the light of these challenges, we study the task of generating medical QA pairs in this paper. With the insight that each medical question can be considered as a sample from the latent distribution of questions given answers, we propose an automated medical QA pair generation framework, consisting of an unsupervised key phrase detector that explores unstructured material for validity, and a generator that involves a multi-pass decoder to integrate structural knowledge for diversity. A series of experiments have been conducted on a real-world dataset collected from the National Medical Licensing Examination of China. Both automatic evaluation and human annotation demonstrate the effectiveness of the proposed method. Further investigation shows that, by incorporating the generated QA pairs for training, significant improvement in terms of accuracy can be achieved for the examination QA system.Comment: AAAI 202

    Magnetization reversal in Kagome artificial spin ice studied by first-order reversal curves

    Get PDF
    Magnetization reversal of interconnected Kagome artificial spin ice was studied by the first-order reversal curve (FORC) technique based on the magneto-optical Kerr effect and magnetoresistance measurements. The magnetization reversal exhibits a distinct six-fold symmetry with the external field orientation. When the field is parallel to one of the nano-bar branches, the domain nucleation/propagation and annihilation processes sensitively depend on the field cycling history and the maximum field applied. When the field is nearly perpendicular to one of the branches, the FORC measurement reveals the magnetic interaction between the Dirac strings and orthogonal branches during the magnetization reversal process. Our results demonstrate that the FORC approach provides a comprehensive framework for understanding the magnetic interaction in the magnetization reversal processes of spin-frustrated systems

    Discussion on the Construction of Ecological Water Network in Guangxi Province of China

    Get PDF
    The water network plays an important role in maintaining the stability of regional water resource and ecological environment. It is also affecting the harmonious development between environment and economy. Guangxi is one of the provinces with relatively rich water resources in China, while the ecological water network exists deficiencies and faces challenges. The current situation and defects of ecological water network in Guangxi province will be discussed. By studying the experience of the establishing and the preserve of ecological water network in various regions at home and abroad, some suggestions and targeted measures will be mentioned for a better ecological water network in Guangxi
    corecore