22,948 research outputs found

    M5-branes and Wilson Surfaces

    Full text link
    We investigate the M5-brane description of the Wilson surface operators in six-dimensional (2,0) superconformal field theory from AdS/CFT correspondence. We consider the Wilson surface operators in high-dimensional representation, whose description could be M5-brane string soliton solutions in AdS7×S4AdS_7\times S^4 background. We construct such string soliton solutions from the covariant M5-brane equations of motion and discuss their properties. The supersymmetry analysis shows that these solutions are half-BPS. We also discuss the subtle issue on the boundary terms.Comment: 30 pages, Latex; little revision;Typos corrected, references added, JHEP published versio

    The "amplitude" parameter of Gamma-Ray Bursts and its implications for GRB classification

    Full text link
    Traditionally gamma-ray bursts (GRBs) are classified in the T90T_{90}-hardness ratio two-dimensional plane into long/soft and short/hard GRBs. In this paper, we suggest to add the "amplitude" of GRB prompt emission as the third dimension as a complementary criterion to classify GRBs, especially those of short durations. We define three new parameters ff, fefff_{\rm eff} and feff,zf_{\rm eff,z} as ratios between the measured/simulated peak flux of a GRB/pseudo-GRB and the flux background, and discuss the applications of these parameters to GRB classification. We systematically derive these parameters to find that most short GRBs are likely not "tip-of-iceberg" of long GRBs. However, one needs to be cautious if a short GRB has a relatively small ff (e.g. f<1.5f<1.5), since the chance for an intrinsically long GRB to appear as a "disguised" short GRB is higher. Based on avaialble data, we quantify the probability of a disguised short GRB below a certain ff value is as P(<f)0.780.4+0.71f4.33±1.84P (<f)\sim 0.78^{+0.71}_{-0.4} f^{-4.33\pm 1.84}. By progressively "moving" a long GRB to higher redshifts through simulations, we also find that most long GRBs would show up as rest-frame short GRBs above a certain redshift.Comment: 11 pages, 14 figures. Accepted by MNRA

    Feasibility study on lengthening the high-voltage cable section and reducing the number of cable joints via alternative bonding methods

    Get PDF
    The mesosphere is perhaps the least explored region in the atmosphere with very few methods of observing. This thesis will primarily be exploring a new technique for measuring the distribution of kinetic energy in the mesosphere across a wide range of spatial and temporal scales. The method being used relies on correlation functions between pairs of meteor measurements. These measurements are made using a network of specular meteor radars located in Northern Norway. This network produced 32 million meteor measurements over a 2 year period. The correlation function estimation method has been previously used on a smaller data set, but has so far not been used for a longer data set and at high latitudes. The main advantage of the new technique is that by studying the second order statistics of the wind field, we can obtain significantly better temporal and spatial resolution than before. Such a large data set allows for great resolution for both spatial and temporal correlation functions. By using temporal correlation functions and the kinetic energy spectrum, different atmospheric wave phenomena can be studied. These include diurnal and semi diurnal tides. The horizontal and vertical correlation functions will be used to verify that the kinetic energy follows a power law, as theoretically expected by the Kolmogorov theory for turbulence. This was done by using a second order structure function applied to correlation functions. The temporal and horizontal correlation functions were used to study the summer-winter variation in kinetic energy, some variation in the temporal domain is the impact from large scale waves as well as in the power spectra were there is a steeper power law slope during the winter. As for the horizontal domain there are differences in kinetic energy in the zonal and meridional direction for both large and small scale waves. The dataset in this thesis a lot more can be found out about the mesosphere, in this thesis only a few of the possibilities are explored. The results are in agreement with earlier work, confirming the results obtained by the earlier study

    Topological superconductivity and Majorana fermions in half-metal / superconductor heterostructure

    Full text link
    As a half-metal is spin-polarized at its Fermi level by definition, it was conventionally thought to have little proximity effect to an s-wave superconductor. Here we show that, with interface spin-orbit coupling, px+ipyp_x +ip_y superconductivity without spin degeneracy is induced on the half-metal, and we give an estimate of its bulk energy gap. Therefore a single-band half-metal can give us a topological superconductor with a single chiral Majorana edge state. Our band calculation shows that two atomic layers of VTe or CrO2_2 is a single-band half-metal for a wide range (\sim0.1eV) of Fermi energy and thus is a suitable candidate material.Comment: 7 pages, 4 figure

    Modelling Time-varying Dark Energy with Constraints from Latest Observations

    Full text link
    We introduce a set of two-parameter models for the dark energy equation of state (EOS) w(z)w(z) to investigate time-varying dark energy. The models are classified into two types according to their boundary behaviors at the redshift z=(0,)z=(0,\infty) and their local extremum properties. A joint analysis based on four observations (SNe + BAO + CMB + H0H_0) is carried out to constrain all the models. It is shown that all models get almost the same χmin2469\chi^2_{min}\simeq 469 and the cosmological parameters (ΩM,h,Ωbh2)(\Omega_M, h, \Omega_bh^2) with the best-fit results (0.28,0.70,2.24)(0.28, 0.70, 2.24), although the constraint results on two parameters (w0,w1)(w_0, w_1) and the allowed regions for the EOS w(z)w(z) are sensitive to different models and a given extra model parameter. For three of Type I models which have similar functional behaviors with the so-called CPL model, the constrained two parameters w0w_0 and w1w_1 have negative correlation and are compatible with the ones in CPL model, and the allowed regions of w(z)w(z) get a narrow node at z0.2z\sim 0.2. The best-fit results from the most stringent constraints in Model Ia give (w0,w1)=(0.960.21+0.26,0.120.89+0.61)(w_0,w_1) = (-0.96^{+0.26}_{-0.21}, -0.12^{+0.61}_{-0.89}) which may compare with the best-fit results (w0,w1)=(0.970.18+0.22,0.151.33+0.85)(w_0,w_1) = (-0.97^{+0.22}_{-0.18}, -0.15^{+0.85}_{-1.33}) in the CPL model. For four of Type II models which have logarithmic function forms and an extremum point, the allowed regions of w(z)w(z) are found to be sensitive to different models and a given extra parameter. It is interesting to obtain two models in which two parameters w0w_0 and w1w_1 are strongly correlative and appropriately reduced to one parameter by a linear relation w1(1+w0)w_1 \propto (1+w_0).Comment: 30 pages, 7 figure
    corecore