3,244 research outputs found
Observation of coherent oscillation in single-passage Landau-Zener transitions
Landau-Zener transition (LZT) has been explored in a variety of physical
systems for coherent population transfer between different quantum states. In
recent years, there have been various proposals for applying LZT to quantum
information processing because when compared to the methods using ac pulse for
coherent population transfer, protocols based on LZT are less sensitive to
timing errors. However, the effect of finite range of qubit energy available to
LZT based state control operations has not been thoroughly examined. In this
work, we show that using the well-known Landau-Zener formula in the vicinity of
an avoided energy-level crossing will cause considerable errors due to coherent
oscillation of the transition probability in a single-passage LZT experiment.
The data agree well with the numerical simulations which take the transient
dynamics of LZT into account. These results not only provide a closer view on
the issue of finite-time LZT but also shed light on its effects on the quantum
state manipulation.Comment: 10 pages,5 figure
Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system
The Kibble-Zurek mechanism (KZM) predicts the density of topological defects
produced in the dynamical processes of phase transitions in systems ranging
from cosmology to condensed matter and quantum materials. The similarity
between KZM and the Landau-Zener transition (LZT), which is a standard tool to
describe the dynamics of some non-equilibrium physics in contemporary physics,
is being extensively exploited. Here we demonstrate the equivalence between KZM
in the Ising model and LZT in a superconducting qubit system. We develop a
time-resolved approach to study quantum dynamics of LZT with nano-second
resolution. By using this technique, we simulate the key features of KZM in the
Ising model with LZT, e.g., the boundary between the adiabatic and impulse
regions, the freeze-out phenomenon in the impulse region, especially, the
scaling law of the excited state population as the square root of the quenching
rate. Our results supply the experimental evidence of the close connection
between KZM and LZT, two textbook paradigms to study the dynamics of the
non-equilibrium phenomena.Comment: Title changed, authors added, and some experimental data update
Observation of Majorana fermions with spin selective Andreev reflection in the vortex of topological superconductor
Majorana fermion (MF) whose antiparticle is itself has been predicted in
condensed matter systems. Signatures of the MFs have been reported as zero
energy modes in various systems. More definitive evidences are highly desired
to verify the existence of the MF. Very recently, theory has predicted MFs to
induce spin selective Andreev reflection (SSAR), a novel magnetic property
which can be used to detect the MFs. Here we report the first observation of
the SSAR from MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which
topological superconductivity was previously established. By using
spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we show
that the zero-bias peak of the tunneling differential conductance at the vortex
center is substantially higher when the tip polarization and the external
magnetic field are parallel than anti-parallel to each other. Such strong spin
dependence of the tunneling is absent away from the vortex center, or in a
conventional superconductor. The observed spin dependent tunneling effect is a
direct evidence for the SSAR from MFs, fully consistent with theoretical
analyses. Our work provides definitive evidences of MFs and will stimulate the
MFs research on their novel physical properties, hence a step towards their
statistics and application in quantum computing.Comment: 4 figures 15 page
Recommended from our members
Vitamin D Supplementation Enhances the Fixation of Titanium Implants in Chronic Kidney Disease Mice
Vitamin D (Vit D) deficiency is a common condition in chronic kidney disease (CKD) patients that negatively affects bone regeneration and fracture healing. Previous study has shown that timely healing of titanium implants is impaired in CKD. This study aimed to investigate the effect of Vit D supplementation on implant osseointegration in CKD mice. Uremia was induced by 5/6 nephrectomy in C57BL mice. Eight weeks after the second renal surgery, animals were given 1,25(OH)2D3 three times a week intraperitoneally for four weeks. Experimental titanium implants were inserted into the distal end of femurs two weeks later. Serum measurements confirmed decreased 1,25(OH)2D levels in CKD mice, which could be successfully corrected by Vit D injections. Moreover, the hyperparathyroidism observed in CKD mice was also corrected. X-ray examination and histological sections showed successful osseointegration in these mice. Histomorphometrical analysis revealed that the bone-implant contact (BIC) ratio and bone volume (BV/TV) around the implant were significantly increased in the Vit D-supplementation group. In addition, resistance of the implant, as measured by a push-in method, was significantly improved compared to that in the vehicle group. These results demonstrate that Vit D supplementation is an effective approach to improve the fixation of titanium implants in CKD
Eocene magmatic processes and crustal thickening in southern Tibet : insights from strongly fractionated ca. 43 Ma granites in the western Gangdese Batholith
This research was financially co-supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB03010301), the National Key Project for Basic Research of China (Project 2015CB452604), the Chinese National Natural Science Foundation (41225006, 41472061, and 40973026), the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (China University of Geosciences). The first author thanks the China Scholarship Council (201306400021).This study reports zircon U-Pb age and Hf isotope, whole-rock major and trace element, and Sr-Nd-Pb-Hf isotope data for the Dajia pluton, western Gangdese Batholith, in southern Tibet. These data indicate that the pluton consists of moderately (Group 1) and strongly (Group 2) fractionated granites that were emplaced synchronously at ca. 43 Ma. The Group 1 samples have SiO2 contents of 69−72 wt.% and vary in terms of the differentiation index (DI = 84−93). These rocks are depleted in Ba, Nb, Sr, P, and Ti, with moderate negative Eu anomalies, and display low heavy rare earth elements (HREEs) and Y abundances. The Group 2 samples are characterized by high SiO2 (75−78 wt.%) and DI (95−97); significantly negative Eu anomalies; marked concave-upward middle REE (Gd-Ho) patterns; and Ba, Sr, P, and Ti anomalies that are significantly more negative than those of the Group 1 samples. The Group 1 samples have whole-rock εNd(t) (-5.9 to -6.0), εHf(t) (-4.0 to -4.5), and zircon εHf(t) (-6.0 to + 5.8) values identical to those of the Group 2 samples [εNd(t) = -5.7 to -6.7, εHf(t) = -3.5 to -2.9, and zircon εHf(t) = -2.0 to + 4.2], as well as similar initial Pb isotopic compositions. These data indicate that the two groups were derived from a common source region with garnet as a residual mineral phase. The Group 1 samples were most likely derived from partial melting of garnet-bearing amphibolite (rather than eclogite) within the juvenile southern Lhasa crust and mixed with the enriched components from the subducting ancient Indian continental crust and/or the ancient central Lhasa basement. The Group 2 samples are interpreted as the products of extensive fractional crystallization (plagioclase, K-feldspar, biotite, apatite, allanite, titanite, monazite, and ilmenite) of the melts represented by the Group 1 samples. Low HREEs and Y abundances of the Dajia pluton, together with the presence of strongly fractionated granites (Group 2) identified for the first time in the Gangdese Batholith, indicate that the crust beneath the Dajia region had already been thickened by ca. 43 Ma. High whole-rock zircon saturation temperatures (815°C−869°C) of the Group 1 samples and the other ca. 43 Ma coeval magmatism documented both in the Gangdese Batholith and in the Tethyan Himalaya can be best interpreted as the final consequences of the magmatic responses to the Neo-Tethyan oceanic slab breakoff.PostprintPeer reviewe
Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: A pilot study.
BackgroundThis article describes a pilot study evaluating a novel liquid biopsy system for non-small cell lung cancer (NSCLC) patients. The electric field-induced release and measurement (EFIRM) method utilizes an electrochemical biosensor for detecting oncogenic mutations in biofluids.MethodsSaliva and plasma of 17 patients were collected from three cancer centers prior to and after surgical resection. The EFIRM method was then applied to the collected samples to assay for exon 19 deletion and p.L858 mutations. EFIRM results were compared with cobas results of exon 19 deletion and p.L858 mutation detection in cancer tissues.ResultsThe EFIRM method was found to detect exon 19 deletion with an area under the curve (AUC) of 1.0 in both saliva and plasma samples in lung cancer patients. For L858R mutation detection, the AUC of saliva was 1.0, while the AUC of plasma was 0.98. Strong correlations were also found between presurgery and post-surgery samples for both saliva (0.86 for exon 19 and 0.98 for L858R) and plasma (0.73 for exon 19 and 0.94 for L858R).ConclusionOur study demonstrates the feasibility of utilizing EFIRM to rapidly, non-invasively, and conveniently detect epidermal growth factor receptor mutations in the saliva of patients with NSCLC, with results corresponding perfectly with the results of cobas tissue genotyping
Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells.
Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB
- …
