29,717 research outputs found
Secure thermal infrared communications using engineered blackbody radiation
The thermal (emitted) infrared frequency bands, from 20â40â
THz and 60â100â
THz, are best known for applications in thermography. This underused and unregulated part of the spectral range offers opportunities for the development of secure communications. The âTHz Torch' concept was recently presented by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels; the energy in each channel is then independently pulsed modulated and multiplexing schemes are introduced to create a robust form of short-range secure communications in the far/mid infrared. To date, octave bandwidth (25â50â
THz) single-channel links have been demonstrated with 380â
bps speeds. Multi-channel âTHz Torch' frequency division multiplexing (FDM) and frequency-hopping spread-spectrum (FHSS) schemes have been proposed, but only a slow 40â
bps FDM scheme has been demonstrated experimentally. Here, we report a much faster 1,280â
bps FDM implementation. In addition, an experimental proof-of-concept FHSS scheme is demonstrated for the first time, having a 320â
bps data rate. With both 4-channel multiplexing schemes, measured bit error rates (BERs) of < 10(â6) are achieved over a distance of 2.5â
cm. Our approach represents a new paradigm in the way niche secure communications can be established over short links
An agent-based DDM for high level architecture
The Data Distribution Management (DDM) service is one of the six services provided in the Runtime Infrastructure (RTI) of High Level Architecture (HLA). Its purpose is to perform data filtering and reduce irrelevant data communicated between federates. The two DDM schemes proposed for RTI, region based and grid based DDM, are oriented to send as little irrelevant data to subscribers as possible, but only manage to filter part of this information and some irrelevant data is still being communicated. Previously (G. Tan et al., 2000), we employed intelligent agents to perform data filtering in HLA, implemented an agent based DDM in RTI (ARTI) and compared it with the other two filtering mechanisms. The paper reports on additional experiments, results and analysis using two scenarios: the AWACS sensing aircraft simulation and the air traffic control simulation scenario. Experimental results show that compared with other mechanisms, the agent based approach communicates only relevant data and minimizes network communication, and is also comparable in terms of time efficiency. Some guidelines on when the agent based scheme can be used are also give
The Luminosity - E_p Relation within Gamma--Ray Bursts and Implications for Fireball Models
Using a sample of 2408 time-resolved spectra for 91 BATSE gamma-ray bursts
(GRBs) presented by Preece et al., we show that the relation between the
isotropic-equivalent luminosity (L_iso) and the spectral peak energy (E_p) in
the cosmological rest frame, L_iso \propto E_p^2, not only holds within these
bursts, but also holds among these GRBs, assuming that the burst rate as a
function of redshift is proportional to the star formation rate. The possible
implications of this relation for the emission models of GRBs are discussed. We
suggest that both the kinetic-energy-dominated internal shock model and the
magnetic-dissipation-dominated external shock model can well interpret this
relation. We constrain the parameters for these two models, and find that they
are in a good agreement with the parameters from the fittings to the afterglow
data (abridged).Comment: 3 pages plus 5 figures, emulateapj style, accepted for publication in
ApJ Letter
Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000
International audienceLong-term trends in downwelling solar irradiance and associated climatic factors over China are studied in the paper. Decreasing trends in global and direct radiation are observed over much of China. The largest decrease occurs in South and East China (east of about 100° E and south of about 40° N). The spatial pattern of observed trends in diffuse irradiance is complex and inhomogeneous. An intriguing aspect of trends in global and direct irradiance is the rather abrupt decrease in annual and seasonal mean values from 1978 onward. The decreasing trends in solar radiation in China did not persist into the 1990s. The spatial and temporal patterns of trends in sunshine duration are consistent with that of global and direct irradiance. A decreasing trend in rainy days is observed over much of China, which is in agreement with the secular trend in cloud amount. The fact that trends in cloud amount and solar radiation are quite similar suggests that the cloud amount is not the primary cause for the decrease in solar radiation. Visibility in the eastern part of China has deteriorated heavily as a result of the rapid increase in aerosol loading. The statistical analysis showed that atmospheric transmission under clear conditions decreased rapidly. These facts suggest that the rapid increase in aerosol loading should be one of the principle causes for the decrease in solar radiation. The observed diurnal temperature range decreases remarkably in China, which is closely related to the increase in aerosols. The effects of anthropogenic air pollutants on climate should be further studied and included in the simulation of climate and projection of climate scenario. Keywords. Atmospheric composition and structure (Aerosol and particles; General or miscellaneous) ? Meteorology and atmospheric dynamics (Radiative processes
Semantic Object Parsing with Graph LSTM
By taking the semantic object parsing task as an exemplar application
scenario, we propose the Graph Long Short-Term Memory (Graph LSTM) network,
which is the generalization of LSTM from sequential data or multi-dimensional
data to general graph-structured data. Particularly, instead of evenly and
fixedly dividing an image to pixels or patches in existing multi-dimensional
LSTM structures (e.g., Row, Grid and Diagonal LSTMs), we take each
arbitrary-shaped superpixel as a semantically consistent node, and adaptively
construct an undirected graph for each image, where the spatial relations of
the superpixels are naturally used as edges. Constructed on such an adaptive
graph topology, the Graph LSTM is more naturally aligned with the visual
patterns in the image (e.g., object boundaries or appearance similarities) and
provides a more economical information propagation route. Furthermore, for each
optimization step over Graph LSTM, we propose to use a confidence-driven scheme
to update the hidden and memory states of nodes progressively till all nodes
are updated. In addition, for each node, the forgets gates are adaptively
learned to capture different degrees of semantic correlation with neighboring
nodes. Comprehensive evaluations on four diverse semantic object parsing
datasets well demonstrate the significant superiority of our Graph LSTM over
other state-of-the-art solutions.Comment: 18 page
De Novo Genome Sequence of "Candidatus Liberibacter solanacearum" from a Single Potato Psyllid in California.
The draft genome sequence of "Candidatus Liberibacter solanacearum" strain RSTM from a potato psyllid (Bactericera cockerelli) in California is reported here. The RSTM strain has a genome size of 1,286,787Â bp, a G+C content of 35.1%, 1,211 predicted open reading frames (ORFs), and 43 RNA genes
Preface of special issue on laser scanning
A laser is a spatially coherent light that can travel through space with very little diffraction [...
A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property.
Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/ÎČ domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase
- âŠ