51,638 research outputs found

    Testing the Universal Structured Jet Models of Gamma-Ray Bursts by BATSE Observations

    Full text link
    Assuming that the observed gamma-ray burst (GRB) rate as a function of redshift is proportional to a corrected star formation rate, we derive the empirical distribution of the viewing angles of long BATSE GRBs, Pem(θ)P^{\rm em}(\theta), and the distribution of these bursts in the plane of θ\theta against redshift, Pem(θ,z)P^{\rm em}(\theta, z), by using a tight correlation between EγE_{\gamma}) and EpE_{\rm p}^{'}). Our results show that Pem(θ)P^{\rm em}(\theta) is well fitted by a log-normal distribution centering at logθ/rad=0.76\log \theta/{\rm rad}=-0.76 with a width of σlogθ=0.57\sigma_{\log \theta}=0.57. We test different universal structured jet models by comparing model predictions with our empirical results. To make the comparisons reasonable, an "effective" threshold, which corresponds to the sample selection criteria of the long GRB sample, is used. We find that the predictions of a two-Gaussian jet model are roughly consistent with our empirical results. A brief discussion shows that cosmological effect on the EγEpE_{\gamma}-E_{\rm p}^{'} relation does not significantly affect our results, but sample selection effects on this relationship might significantly influence our results.Comment: 5 pages, 6 figures, accepted for publication in A

    A holistic multimodal approach to the non-invasive analysis of watercolour paintings

    Get PDF
    A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the microstructure and light scattering properties of the substrate while XRF detects the elemental composition that indicates the sizing methods and the filler content . The multiple techniques were applied in a study of forty six 19th century Chinese export watercolours from the Victoria & Albert Museum (V&A) and the Royal Horticultural Society (RHS) to examine to what extent the non-invasive analysis techniques employed complement each other and how much useful information about the paintings can be extracted to address art conservation and history questions

    The Luminosity - E_p Relation within Gamma--Ray Bursts and Implications for Fireball Models

    Full text link
    Using a sample of 2408 time-resolved spectra for 91 BATSE gamma-ray bursts (GRBs) presented by Preece et al., we show that the relation between the isotropic-equivalent luminosity (L_iso) and the spectral peak energy (E_p) in the cosmological rest frame, L_iso \propto E_p^2, not only holds within these bursts, but also holds among these GRBs, assuming that the burst rate as a function of redshift is proportional to the star formation rate. The possible implications of this relation for the emission models of GRBs are discussed. We suggest that both the kinetic-energy-dominated internal shock model and the magnetic-dissipation-dominated external shock model can well interpret this relation. We constrain the parameters for these two models, and find that they are in a good agreement with the parameters from the fittings to the afterglow data (abridged).Comment: 3 pages plus 5 figures, emulateapj style, accepted for publication in ApJ Letter

    On particle acceleration and trapping by Poynting flux dominated flows

    Full text link
    Using particle-in-cell (PIC) simulations, we study the evolution of a strongly magnetized plasma slab propagating into a finite density ambient medium. Like previous work, we find that the slab breaks into discrete magnetic pulses. The subsequent evolution is consistent with diamagnetic relativistic pulse acceleration of \cite{liangetal2003}. Unlike previous work, we use the actual electron to proton mass ratio and focus on understanding trapping vs. transmission of the ambient plasma by the pulses and on the particle acceleration spectra. We find that the accelerated electron distribution internal to the slab develops a double-power law. We predict that emission from reflected/trapped external electrons will peak after that of the internal electrons. We also find that the thin discrete pulses trap ambient electrons but allow protons to pass through, resulting in less drag on the pulse than in the case of trapping of both species. Poynting flux dominated scenarios have been proposed as the driver of relativistic outflows and particle acceleration in the most powerful astrophysical jets.Comment: 25 pages, Accepted by Plasma Physics and Controlled Fusio

    Measurement of the topological surface state optical conductance in bulk-insulating Sn-doped Bi1.1_{1.1}Sb0.9_{0.9}Te2_2S single crystals

    Full text link
    Topological surface states have been extensively observed via optics in thin films of topological insulators. However, in typical thick single crystals of these materials, bulk states are dominant and it is difficult for optics to verify the existence of topological surface states definitively. In this work, we studied the charge dynamics of the newly formulated bulk-insulating Sn-doped Bi1.1_{1.1}Sb0.9_{0.9}Te2_2S crystal by using time-domain terahertz spectroscopy. This compound shows much better insulating behavior than any other bulk-insulating topological insulators reported previously. The transmission can be enhanced an amount which is 5%\% of the zero-field transmission by applying magnetic field to 7 T, an effect which we believe is due to the suppression of topological surface states. This suppression is essentially independent of the thicknesses of the samples, showing the two-dimensional nature of the transport. The suppression of surface states in field allows us to use the crystal slab itself as a reference sample to extract the surface conductance, mobility, charge density and scattering rate. Our measurements set the stage for the investigation of phenomena out of the semi-classical regime, such as the topological magneto-electric effect.Comment: 5 pages, 3 figures, submitted in Augus

    Metal-insulator transition in half-filling two-orbital Hubbard model on triangular lattice

    Full text link
    We have investigated the half-filling two-orbital Hubbard model on a triangular lattice by means of the dynamical mean-field theory (DMFT). The densities of states and optical conductivity clearly show the occurence of metal-insulating transition (MIT) at Uc_{c}, Uc_{c}=18.2, 16.8, 6.12 and 5.85 for J=0, 0.01U, U/4 and U/3, respectively. The distinct continuities of double occupation of electrons, local square moments and local susceptibility of the charge, the spin and the orbital at J > 0 suggest that the MIT is the first-order; however at J=0, the MIT is the second-order in the half-filling two-orbital Hubbard model on triangular lattices. We attribute the first-order nature of the MIT to the low symmetry of the systems with finite Hund's coupling J.Comment: 5 figures,13 pages, published versio

    Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system

    Get PDF
    The transmission spectra of a Fabry-Perot etalon coupled to a microtoroid resonator are studied theoretically and experimentally. The resonance line shapes depend strongly on the resonance wavelength detuning and coupling strength between the two resonators. A wide variety of line shapes, ranging from a single to triple peaks, symmetric to asymmetric Fano-like peaks, and notches were predicted and observed experimentally. The capability to modify the spectral line shapes by tuning the coupling between or losses of two resonators may find applications in optical filtering, switching, sensing, and dispersion engineering
    corecore