38,569 research outputs found

    A new camera for high-resolution infrared imaging of works of art

    Get PDF
    A new camera – SIRIS (scanning infrared imaging system) – developed at the National Gallery in London allows high-resolution images to be made in the near infrared region (900–1700 nm). The camera is based on a commercially available 320 × 256 pixel indium gallium arsenide area array sensor. This relatively small sensor is moved across the focal plane of the camera using two orthogonal translation stages to give images of c. 5000 × 5000 pixels. The main advantages of the SIRIS camera over scanning infrared devices or sequential image capture and mosaic assembly are its comparative portability and rapid image acquisition – making a 5000 × 5000 pixel image takes less than 20 minutes. The SIRIS camera can operate at a range of resolutions; from around 2.5 pixels per millimetre over an area of up to 2 × 2 m to 10 pixels per millimetre when examining an area measuring 0.5 × 0.5 m. The development of the mechanical, optical and electronic components of the camera, including the design of a new lens, is described. The software used to control image capture and to assemble the individual frames into a seamless mosaic image is mentioned. The camera was designed primarily to examine underdrawings in paintings; preliminary results from test targets and paintings imaged in situ are presented and the quality of the images compared with those from other cameras currently used for this application

    SIRIS: a high resolution scanning infrared camera for examining paintings

    Get PDF
    The new SIRIS (Scanning InfraRed Imaging System) camera developed at the National Gallery in London allows highresolution images of paintings to be made in the near infrared region (900–1700 nm). Images of 5000 × 5000 pixels are made by moving a 320 × 256 pixel InGaAs array across the focal plane of the camera using two orthogonal translation stages. The great advantages of this camera over scanning infrared devices are its relative portability and that image acquisition is comparatively rapid – a full 5000 × 5000 pixel image can be made in around 20 minutes. The paper describes the development of the mechanical, optical and electronic components of the camera, including the design of a new lens. The software routines used to control image capture and to assemble the individual 320 × 256 pixel frames into a seamless mosaic image are also mentioned. The optics of the SIRIS camera have been designed so that the camera can operate at a range of resolutions; from around 2.5 pixels per millimetre on large paintings of up to 2000 × 2000 mm to 10 pixels per millimetre on smaller paintings or details of paintings measuring 500 × 500 mm. The camera is primarily designed to examine underdrawings in paintings; preliminary results from test targets and paintings are presented and the quality of the images compared with those from other cameras currently used in this field

    Multi-wavelength variability properties of Fermi blazar S5 0716+714

    Full text link
    S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long term simultaneous observations in the radio, near-infrared, optical, X-ray and γ\gamma-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ\gamma-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which are similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows that the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ\gamma-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero-lag, so are the V band and γ\gamma-ray variations, which are consistent with the leptonic models. Coincidences of γ\gamma-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same nature explanation for these observations as the leptonic models. A strong optical flare correlating a γ\gamma-ray flare whose peak flux is lower than the average flux is detected. Leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out due to the extreme input parameters. Scattering of external seed photons, such as the hot dust or broad line region emission, and the SSC process are probably both needed to explain the γ\gamma-ray emission of S5 0716+714.Comment: 43 pages, 13 figures, 3 tables, to be appeared in Ap

    Simulating Z_2 topological insulators with cold atoms in a one-dimensional optical lattice

    Full text link
    We propose an experimental scheme to simulate and detect the properties of time-reversal invariant topological insulators, using cold atoms trapped in one-dimensional bichromatic optical lattices. This system is described by a one-dimensional Aubry-Andre model with an additional SU(2) gauge structure, which captures the essential properties of a two-dimensional Z2 topological insulator. We demonstrate that topologically protected edge states, with opposite spin orientations, can be pumped across the lattice by sweeping a laser phase adiabatically. This process constitutes an elegant way to transfer topologically protected quantum states in a highly controllable environment. We discuss how density measurements could provide clear signatures of the topological phases emanating from our one-dimensional system.Comment: 5 pages +, 3 figures, to appear in Physical Review

    The Search for Million Degree Gas Through The NVII Hyperfine Line

    Full text link
    Gas in the million degree range occurs in a variety of astronomical environments, and it may be the main component of the elusive missing baryons at low redshift. The NVII ion is found in this material and it has a hyperfine spin-flip transition with a rest frequency of 53.042 GHz, which can be observed for z > 0.1, when it is shifted into a suitably transparent radio band. We used the 42-48 GHz spectrometer on the Green Bank Telescope to search for both emission and absorption from this NVII transmission. For absorption studies, 3C273, 3C 279, 3C 345, and 4C+39.25 were observed but no feature were seen above the 5 sigma level. For emission line studies, we observed Abell 1835, Abell 2390 and the star-forming galaxy PKS 1345+12, but no features were seen exceeding 5 sigma. We examine whether the strongest emission feature, in Abell 2390 (3.7 sigma), and the strongest absorption feature, toward 4C+39.25 (3.8 sigma), might be expected from theoretical models. The emission feature would require ~1E10 Msolar of 1E6 K gas, which is inconsistent with X-ray limits for the O VII Kalpha line, so it is unlikely to be real. The NVII absorption feature requires a NVII column of 6E16 cm^-2, higher than model predictions by at least an order of magnitude, which makes it inconsistent with model expectations. The individual observations were less than 1 hr in length, so for lengthy observations, we show that NVII absorption line observations can begin to be useful in in the search for hot intergalactic gas.Comment: 27 total pages; 16 figures; Accepted for publication in The Astrophysical Journa

    Ising metamagnets in thin film geometry: equilibrium properties

    Full text link
    Artificial antiferromagnets and synthetic metamagnets have attracted much attention recently due to their potential for many different applications. Under some simplifying assumptions these systems can be modeled by thin Ising metamagnetic films. In this paper we study, using both the Wang/Landau scheme and importance sampling Monte Carlo simulations, the equilibrium properties of these films. On the one hand we discuss the microcanonical density of states and its prominent features. On the other we analyze canonically various global and layer quantities. We obtain the phase diagram of thin Ising metamagnets as a function of temperature and external magnetic field. Whereas the phase diagram of the bulk system only exhibits one phase transition between the antiferromagnetic and paramagnetic phases, the phase diagram of thin Ising metamagnets includes an additional intermediate phase where one of the surface layers has aligned itself with the direction of the applied magnetic field. This additional phase transition is discontinuous and ends in a critical end point. Consequently, it is possible to gradually go from the antiferromagnetic phase to the intermediate phase without passing through a phase transition.Comment: 8 figures, accepted for publication in Physical Review

    Intrinsic electronic superconducting phases at 60 K and 90 K in double-layer YBa2_2Cu3_3O6+δ_{6+\delta}

    Full text link
    We study superconducting transition temperature (TcT_c) of oxygen-doped double-layer high-temperature superconductors YBa2_2Cu3_3O6+δ_{6+\delta} (0 \le δ\delta \le 1) as a function of the oxygen dopant concentration (δ\delta) and planar hole-doping concentration (PplP_{pl}). We find that TcT_c, while clearly influenced by the development of the chain ordering as seen in the TcT_c vs.vs. δ\delta plot, lies on a universal curve originating at the critical hole concentration (PcP_c) = 1/16 in the TcT_c vs.vs. PplP_{pl} plot. Our analysis suggests that the universal behavior of TcT_c(PplP_{pl}) can be understood in terms of the competition and collaboration of chemical-phases and electronic-phases that exist in the system. We conclude that the global superconductivity behavior of YBa2_2Cu3_3O6+δ_{6+\delta} as a function of doping is electronically driven and dictated by pristine electronic phases at magic doping numbers that follow the hierarchical order based on PcP_c, such as 2 ×\times PcP_c, 3 ×\times PcP_c and 4 ×\times PcP_c. We find that there are at least two intrinsic electronic superconducting phases of TcT_c = 60 K at 2 ×\times PcP_c = 1/8 and TcT_c = 90 K at 3 ×\times PcP_c = 3/16.Comment: 4 pages, 2 figure
    corecore